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Exploratory Projection Pursuit 

JEROME H. FRIEDMAN* 

A new projection pursuit algorithm for exploring multivariate data is 
presented that has both statistical and computational advantages over 
previous methods. A number of practical issues concerning its application 
are addressed. A connection to multivariate density estimation is estab- 
lished, and its properties are investigated through simulation studies and 
application to real data. The goal of exploratory projection pursuit is to 
use the data to find low- (one-, two-, or three-) dimensional projections 
that provide the most revealing views of the full-dimensional data. With 
these views the human gift for pattern recognition can be applied to help 
discover effects that may not have been anticipated in advance. Since 
linear effects are directly captured by the covariance structure of the 
variable pairs (which are straightforward to estimate) the emphasis here 
is on the discovery of nonlinear effects such as clustering or other general 
nonlinear associations among the variables. Although arbitrary nonlinear 
effects are impossible to parameterize in full generality, they are easily 
recognized when presented in a low-dimensional visual representation 
of the data density. Projection pursuit assigns a numerical index to every 
projection that is a functional of the projected data density. The intent 
of this index is to capture the degree of nonlinear structuring present in 
the projected distribution. The pursuit consists of maximizing this index 
with respect to the parameters defining the projection. Since it is unlikely 
that there is only one interesting view of a multivariate data set, this 
procedure is iterated to find further revealing projections. After each 
maximizing projection has been found, a transformation is applied to 
the data that removes the structure present in the solution projection 
while preserving the multivariate structure that is not captured by it. The 
projection pursuit algorithm is then applied to these transformed data 
to find additional views that may yield further insight. This projection 
pursuit algorithm has potential advantages over other dimensionality 
reduction methods that are commonly used for data exploration. It fo- 
cuses directly on the "interestingness" of a projection rather than indi- 
rectly through the interpoint distances. This allows it to be unaffected 
by the scale and (linear) correlational structure of the data, helping it 
to overcome the "curse of dimensionality" that tends to plague methods 
based on multidimensional scaling, parametric mapping, cluster analysis, 
and principal components. 

KEY WORDS: Exploratory data analysis; Multivariate analysis; Density 
estimation; Data mapping; Statistical graphics; Multiparameter numer- 
ical optimization. ' 

1, INTRODUCTION 

Often, especially during the initial stages, the analysis 
of a data set is exploratory. One wishes to gain insight and 
understanding about the nature of the phenomena or sys- 
tem that produced the data without imposing preconceived 
notions or models. For multivariate data a first set of useful 
summary statistics is based on the locations and scales of 
the measurement variables as well as on their correlational 
structure. Classical multivariate analysis has provided 
powerful tools for their estimation (see Anderson 1958). 
If the data closely follow an elliptically symmetric distri- 
bution (such as the normal) in the p-dimensional variable 
space, then these summary statistics usually provide nearly 
all of the relevant information. 

Sometimes, however, important structure in the data is 
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not adequately captured by the linear associations (cor- 
relations) among the variables. Such effects include clus- 
tering of the observations into distinct groups and/or con- 
centrations near nonlinear manifolds (which may be made 
up of parts of linear manifolds). Knowledge of the exis- 
tence and nature of such effects can sometimes help in 
understanding the underlying phenomena. In contrast to 
linear effects, the variety of shapes and other attributes 
of nonlinearity are immense. It is thus impossible to pre- 
specify all possibilities in advance and attempt to estimate 
their corresponding parameters. Powerful approaches can 
be based on making informative pictorial representations 
of the data upon which the human gift for pattern rec- 
ognition can be applied. By viewing (lower-dimensional) 
representations of the data density, the analyst can often 
detect striking as well as subtle structure that was impos- 
sible to anticipate. 

Unfortunately, the human gift for pattern recognition 
is limited to low dimension. In addition, the technology 
available to the analyst may place further restrictions on 
the viewing dimension. Ordinary plotting is limited to two 
dimensions. Sophisticated uses of motion and color with 
computer graphics displays can increase the dimensionality 
for viewing the data to three or perhaps a bit more. If one 
is to graphically explore multivariate data, it is necessary 
to find highly revealing lower-dimensional (one-, two-, or 
three-dimensional) representations. 

The most commonly used dimension-reducing transfor- 
mations are linear projections. This is because they are 
among the simplest and most interpretable. Moreover, 
projections are smoothing operations in that structure can 
be obscured by projection but never enhanced. Any struc- 
ture seen in a projection is a shadow of an actual (usually 
sharper) structure in the full dimensionality. In this sense 
those projections that are the most revealing of the high- 
dimensional data distribution are those containing the 
sharpest structure. It is of interest then to pursue such 
projections. 

Friedman and Tukey (1974) presented an algorithm for 
attempting this goal. The basic idea was to assign a nu- 
merical index to every (one- or two-dimensional) projec- 
tion that characterized the amount of structure present 
(data density variation) in the projection. This index was 
then maximized (via numerical optimization) with respect 
to the parameters defining the projections. They termed 
this method "projection pursuit." Since all (density) es- 
timation is performed in a univariate (or bivariate) setting 
this method has the potential of overcoming the "curse of 
dimensionality" (Bellman 1961) that afflicts such nonlin- 
ear methods as parametric mapping (multidimensional 
scaling) and cluster analysis that are based on interpoint 
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distances. In addition, the projection index can (and often 
should) be affine invariant (see Huber 1985). Therefore, 
unlike (projections based on) principal components or fac- 
tor analysis, it is unaffected-and thus not distracted-by 
the overall covariance structure of the data, which often 
has little to do with clustering and other nonlinear effects. 

Projection pursuit solutions are seldom unique. Usually 
data structuring in the full dimensionality will be observ- 
able in several lower-dimensional projkctions and the 
viewing of each can provide additional insight. It is thus 
important that a projection pursuit algorithm find as many 
of these views as possible. Each of these views will (it is 
hoped) give rise to a substantive local maximum in the 
projection index. One way to encourage the discovery of 
several important views is to repeatedly invoke the opti- 
mization procedure, each time removing from consider- 
ation the solutions previously found. Structure removal is, 
therefore, an important part of any successful projection 
pursuit procedure. 

This article presents a new projection pursuit algorithm. 
Its projection index has superior sensitivity and similar 
robustness properties to the Friedman-Tukey (1974) in- 
dex, and it is much more rapidly computable. The opti- 
mization procedure is faster and far more thorough. Fi- 
nally, a systematic solution to the structure removal prob- 
lem is presented. 

2. THE PROJECTION INDEX 

The projection index forms the heart of a projection 
pursuit method. It defines the intent of the procedure. 
Our intent is to discover interesting structured projections 
of a multivariate data set. This rather vague goal must be 
translated into a numerical index that is a functional of 
the projected data distribution. This functional must vary 
continuously with the parameters defining the projection 
and have a large value when the (projected) distribution 
is defined to be "interesting" and a small value otherwise. 
The notion of interesting will obviously vary with the ap- 
plication (see Huber 1985). As stated in the Introduction, 
our goal is to discover additional structure not captured 
by the correlational structure of the data. A way to insure 
this is to make the projection index invariant to all non- 
singular affine transformations in thep-variable data space 
(see Huber 1985; Jones 1983). 

Although the notion of interesting may be difficult to 
quantify, the converse notion of uninteresting seems more 
straightforward. Huber (1985) and Jones (1983) gave strong 
heuristic arguments to the effect that the (projected) nor- 
mal distribution ought to be considered the least interest- 
ing: 

1. The multivariate normal density is elliptically sym- 
metric and is totally specified by its linear structure (lo- 
cation and covariances). 

2. All projections of a multivariate normal distribution 
are normal. Therefore, evidence for nonnormality in any 
projection is evidence against multivariate joint normality. 
Conversely, if the least normal projection is-not signif-
icantly different from-normal, then there is evidence for 
joint normality of the measurement variables. 
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3. Even if several linear combinations of variables are 
(possibly highly) structured (nonnormal), most linear com- 
binations (views) will be distributed approximately nor- 
mally. Roughly, this is a consequence of the central limit 
theorem (sums tend to be normally distributed). This no- 
tion was made precise by Diaconis and Freedman (1984). 

4. For fixed variance, the normal distribution has the 
least information (Fisher, negative entropy). 

Since our goal is the discovery of nonlinear structure, 
it is principally the elliptical symmetry of the multivariate 
normal that causes it to be regarded as least interesting 
for our purposes. Depending on the context, other ellip- 
tically symmetric distributions may serve as well or better. 
But (as exploited below) the computational tractability of 
the normal makes it an attractive choice among the family 
of elliptically symmetric distributions. 

Following this view, any test statistic for testing nor- 
mality could serve as the basis for a projection index. 
Different test statistics have the property of being more 
(or less) sensitive to different alternative distributions. It 
is the particular alternatives that are of interest here, since 
(in the context of projection pursuit) they define the notion 
of an interesting distribution. We must choose a statistic 
that has preferential power against the (projected) distri- 
butions that we are seeking with our projection pursuit 
algorithm. 

The most powerful tests for nonnormality emphasize 
alternative distributions with heavy tails. 0uE intent is to 
seek projected distributions that exhibit clustering (multi- 
modality) or other kinds of nonlinear associations. Such 
distributions differ from the normal mainly near the center 
of the distribution, rather than in the tails. Therefore, we 
seek a projection index (test statistic) that emphasizes de- 
parture from normality in the main body of the distribution 
and gives correspondingly less weight to the tails. 

Since the projection index serves as the objective func- 
tion for a multiparameter optimization, its computational 
properties are crucial. For a given set of parameter values, 
its value should be rapidly computable. It should be ab- 
solutely continuous so that at least its first derivatives (with 
respect to the parameters) exist everywhere. These deriv- 
atives should also be rapidly computable. 

The most computationally attractive projection indexes 
are based on polynomial moments. No sorting of the pro- 
jected values is required, and the values of the polynomials 
as well as their derivatives are rapidly computed by means 
of recursion relations. Since we are interested in departure 
from normality, it would be natural to base a projection 
index on the standardized (absolute) cumulants of the 
projected distribution (see Huber 1985, p. 445). These are 
the moments of the Hermite polynomials. Jones (1983) 
suggested a projection index based on sums of squares of 
standardized cumulants. 

Despite their computational attractiveness, projection 
indexes based on standardized cumulants are (unfortu- 
nately) not useful for our application. This is because they 
very heavily emphasize departure from normality in the 
tails of the distribution. For example, a (projected) dis- 
tribution with only slightly heavier than normal tails re- 
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ceives a much higher index value than a highly clustered 
projection. 

It is possible to base a projection index on moments 
having the required statistical properties. Such an index is 
developed in this section. The main idea is to change scale 
by first transforming the projected data using the normal 
cdf and then comparing the transformed distribution with 
the uniform. 

Following Huber (1985), the algorithm will be described 
first in its abstract version. That is, we imagine it operating 
on a p-dimensional continuous probability distribution. 
This makes some of the notation simpler. In our case, the 
practical version (i.e., applied to data samples) is usually 
obtained by simply replacing the expected value operation 
with the corresponding data average. There are other mi- 
nor differences that are pointed out at the appropriate 
places in the description. Random variable terminology 
will be used. Uppercase letters will denote random vari- 
ables and their lowercase counterparts (usually with sub- 
scripts) will denote realized values in the sample. 

As a first computational economy, we begin by "spher- 
ing" the data (Huber 1981; Jones 1983; Tukey and Tukey 
1981). The idea is to perform a linear transformation (ro- 
tation, location, and scale change) that removes (incor- 
porates) all of the location, scale, and correlational struc- 
ture. Let Y be a random variable in RP. We perform an 
eigenvalue-eigenvector decomposition of the covariance 
matrix 

with U an orthonormal and D a diagonal p x p matrix. 
We then define new variables Z = D-lI2U(Y - EY). 
More specifically, let q be the rank of 2. Then the q 
components of Z are given by 

The rows of U and D are assumed ordered in descending 
(nonnegative) values of D,. By definition E [ Z ] = 0 and 
E[ZZT] = I, the identity matrix. 

The computational advantage gained by sphering is re- 
flected by the fact that data constraints in the N-dimen- 
sional observation space become geometrical constraints 
in the p-dimensional variable space. First, any linear com- 
bination X = a T Z  = xy=laiZi has variance var(X) = 
aTa= x;=,a:; thus enforcing the constraint 

insures that all linear combinations have unit variance. 
Second, two linear combinations based on orthogonal vec- 
tors are uncorrelated. That is, aT/?= 0 implies that 
E[(aTZ)(,f3TZ)]= 0. 

All operations are performed on the sphered variables 
Z .  (Only at the end do we transform the solutions back 
to reference the original coordinates Y.) This frees us from 
having to compute variances in individual projections in 
order to standardize density estimates during the numer- 
ical optimization. Since sphering need only be done once 
at the beginning, this results in a substantial computational 
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saving. By definition the Z variables are affine invariant, 
thus any (orthogonally invariant) projection index based 
on them will inherit this property. 

~ l t h o u g hin most exploratory applications two or higher 
dimensional projection pursuit will likely prove the more 
informative, we begin by describing our projection index 
for a one-dimensional projection pursuit. The concepts 
underlying the two algorithms are nearly identical and the 
notation is simpler for the one-dimensional case. The ex- 
tension to two (and higher) dimensions is seen to be 
straightforward. 

In a one-dimensional exploratory projection pursuit we 
seek a linear combination 

such that the probability density p,(X) is relatively highly 
structured. As discussed earlier, we regard the (standard) 
normal as the least structured density, and we are con- 
cerned with finding departures that manifest themselves 
in the main body of the distribution rather than in the tails. 
To this end we begin by performing a transformation 

with @(X) being the standard normal cdf 

X 

@(XI = ( 1 1 6 )  j-me-lizFdl. (5) 

Clearly, R takes on values in the interval -15 R 5 1, 
and if Xfollows a standard normal distribution then R will 
be uniformly distributed in this interval. Specifically, 

with g(X) being the standard normal density. Thus, a 
measure' of nonuniformity of R corresponds to a measure 
of nonnormality of X. We take as a measure of nonuni- 
formity the integral-squared distance between the prob- 
ability density of R, pR(R), and the uniform probability 
density, p,(R) = 4,over the interval -1I R I 1: 

Our projection index ](a) is taken to be a moment ap- 
proximation to (6). 

Expanding pR(R) in Legendre polynomials we have 

where the Legendre polynomials are defined by 

for j 2 2. The coefficients are given by 
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so that 

For a uniform distribution U(- 1, I),  E[P,(R)] = 0 for j 
> 0. 

Our projection index is obtained by truncating the sum 
in (8) at order J ,  

Note that this projection index measures departure from 
normality even if the J-term expansion is not an accurate 
approximation to p,(R), since it achieves its minimum 
value (0) for Xnormally distributed (R uniform). Of course, 
for finite J the (projected) normal is not the unique min- 
imizer of Z(a). Any distribution of X that after the trans- 
formation (4) results in a distribution pR(R) with zero 
values for its first J Legendre polynomial moments will 
also be regarded as a least interesting distribution. 

For a practical version of the algorithm operating on a 
data sample, the expected values in (9) are estimated by 
the corresponding sample averages. Substituting from (3) 
and (4) we have 

as the sample version of our projection index. This is to 
be maximized with respect to the q components of a under 
the constraint aTa = 1. Details of the optimization pro- 
cedure are given in Section 5. 

The projection index (10) can be computed fairly rap- 
idly. Fast appoximations (to machine accuracy) for the 
normal integral (5) exist (see Kennedy and Gentle 1980) 
and are provided as built-in intrinsic functions by many 
programming language compilers. The Legendre poly- 
nomials to order J are quickly obtained via the recursion 
relation (7). 

For efficient optimization it is useful to have derivatives 
of the objective function. These are easily obtained for 
our projection index via the chain rule for differentiation. 
The result is 

with X given by (3) and R given by (4). The derivatives 
of each Legendre polynomial with respect to its argument 
is rapidly obtained by the recursion relation 

forj >1.The derivative calculation (11) takes into account 
the constraint aTa = 1 by keeping the gradient vector 
V,I(a) orthogonal to the gradient of the constraint func- 
tion V,(aTa) = 2a. This is the purpose of subtracting ffkX 
from Zk in the second expectation (11). The derivatives 
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of f(a) (10) are obtained by applying sample averages in 
place of the expectation operators. 

The projection index for a two-dimensional projection 
pursuit is developed in direct analogy with the one-di- 
mensional index. We seek two linear combinations 

such that the joint distribution (probability density) p4(X1, 
X2) is highly structured. Since we are interested in non- 
linear structure we require the two linear combinations to 
be uncorrelated, corr(Xl, X2) = 0. As a consequence of 
our definition of Z (data sphering) this constraint is equiv- 
alent to requiring a to 8 to be orthogonal, aTp= 0. We 
must also require that the variances in all projections be 
equal. This is insured by the sphering and constraints aTa 
= pTp = 1. 

We regard the bivariate standard normal to be the least 
structured joint distribution and are interested in depar- 
tures that are manifest in the main body of the distribution 
rather than in the tails. We begin by transforming the XI, 
X2 plane to the square ( -1, 1) x ( -1, 1) by means of 

with @(X) defined by (5). If Xi, X2 have a joint standard 
normal distribution, then R1, R2 will be uniformly distrib- 
uted on the square. We take as a measure of nonuniformity 
the integral-square distance from the uniform 

Our projection index ](a, 8 )  is taken as a product moment 
approximation to (15). Expanding pR(Rl, R2) in a product 
Legendre expansion and proceeding in direct analogy with 
the development of the one-dimensional index we have 

with the Legendre polynomials defined by (7). Our bi- 
variate projection index is obtained by truncating the ex- 
pansion at order J ,  

As for the univariate index, derivatives of the bivariate 



253 Friedman: Exploratory Projection Pursuit 

index are easily obtained: 

x E[P~(R~)P;(R~)~-(~~~)~~(Z,,- PnX2)].-

The quantities Xl and X2 are given by (13), and R1 and 
R2 are given by (14). The data version of the index and 
its derivatives are obtained by substituting sample averages 
for the expectations. The derivatives account for the con- 
straints (aTa = pT/3= 1,aTP= 0) by keeping the gradient 
vector simultaneously orthogonal to the gradients of the 
three constraint functions. 

The computation of the bivariate index is analogous to 
that of the univariate index. For a corresponding order J 
it is more expensive, since it and its derivatives contain 
more terms. In addition, the optimization is with respect 
to twice as many parameters. On the other hand, the bi- 
variate solutions often contain considerably more infor- 
mation concerning the multivariate density. 

There is one (user-defined) parameter associated with 
the (one- or two-dimensional) projection index. It is the 
order J((9), (16)) of the polynomial expansion of the 
(transformed) density. It controls the amount of smooth- 
ness imposed on the approximation. Limited experience 
indicates that the results are insensitive to the value chosen 
for J over a fairly wide range (4 IJ 5 8) except for very 
small sample size. Intuition suggests that the value of J 
should increase with the sample size, but there are as yet 
no specific guidelines. The computation increases linearly 
with increasing J for one-dimensional projection pursuit 
and quadratically for two-dimensional projection pursuit. 

3. STRUCTURE REMOVAL 
The purpose of the optimization algorithm (detailed in 

Sec. 5) is to find a substantive maximum of the projection 
index. The corresponding (one- or two-dimensional) pro- 
jection will (we hope) present an informative view of the 
p-dimensional data density. It is unlikely, however, that 
there is only one such informative view. Usually, the non- 
normality of the full p-dimensional data distribution will 
be manifest in several one- or two-dimensional projec- 

tions. Each of these projections can help in the identifi- 
cation and interpretation of the effects. Moreover, there 
is no reason to believe that the algorithm will find the most 
informative of these views first. For these reasons it is 
important that the projection pursuit procedure find as 
many of these informative views as possible. 

A variety of approaches for accomplishing structure re- 
moval have been suggested (see Huber 1985, p. 449). The 
most systematic of these (for one-dimensional projection 
pursuit) is the recursive approach associated with the pro- 
jection pursuit density estimation procedure (Friedman, 
Stuetzle, and Schroeder 1984). After an interesting pro- 
jection has been found (solution maximizing the projection 
index), remove the structure that makes the projection 
interesting (deflate that maximum of the objective func- 
tion) and then remaximize the projection index. This can 
be done repeatedly. In the projection pursuit density es- 
timation approach this was implemented using a complex 
strategy for maintaining and updating an estimate for the 
p-dimensional probability density and involved Monte Carlo 
sampling. It is thus computationally quite expensive. We 
present a simple procedure for structure removal that is 
computationally much faster and has a straightforward im- 
plementation for two-dimensional projections. 

By definition of our projection index, a view (projected 
density) has zero interest if it is standard normal. There- 
fore, the structure can be removed by applying a trans- 
formation that takes the (projected) density to a standard 
normal distribution. We thus require a transformation of 
the q variables, the result of which renders a standard 
normal distribution in the projected subspace, but leaves 
all orthogonal directions unchanged. We develop such a 
transformation below. 

We first describe the procedure for a one-dimensional 
projection. Let X = aTZ be a one-dimensional projection 
(var(X) = 1) and F,(X) be its cdf. Then applying the 
transformation 

X '  = @-I(F,(X)) (17) 

to X results in a standard normal distribution for X'. Here 
@-I  is the inverse of the standard normal cdf (5). 

Let U be an orthonormal (q x q) matrix with a (the 
projection pursuit solution) as the first row. Then applying 
the linear transformation T = UZ results in a rotation 
such that the new first coordinate is TI = aTZ = X. Let 
@ be a (vector) transformation (with components el 8,) 
that takes Tl to a standard normal distribution and is the 
identity transformation on T2 T,: 

Then the transformation 

transforms the projection X = aTZ to a standard normal 
distribution leaving all orthogonal directions unchanged. 
We then reapply the maximization procedure with a pro- 
jection index based on Z'. 
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By definition, the q-variate distribution of Z '  exhibits 
no structure in the projection X'  = aTZ' (zero value of 
the projection index). The joint distribution of Z, p(Z), 
and that of Z' ,  p t (Z ' ) ,  determine the same conditional 
density given aTZ: 

In fact, 

p ' (Zt)  = p(Z')[g(ffTZ')/p,(aTZ')l,(21) 

with p, the (univariate) density of aTZ and g the standard 
normal density 

g(X) = ( 1 / 6 ) e - ~ ~ ' ~ .  (22) 

In this sense the transformation (19) produces a new (vec- 
tor-valued random) variable Z '  whose distribution is as 
close as possible to that of Z under the constraint that its 
marginal distribution along a be normal (zero interest). It 
also produces the closest distribution under this constraint 
in the sense of the relative entropy distance measure 

log@)p d l  = Il o g k ) p a  d(aTX) = min (23) 

(see Huber 1985). 
The data sample version of (17) is easily implemented. 

One substitutes the empirical distribution P&(X)(X = 
aTZ) for the distribution function F,(X): 

x, = @-l(fiaN(xi))= @-l[(r(xi)lN) - 1/2N], (24) 

with r(xi) being the rank of xi among the N (projected) 
observations. This transformation simply replaces each ob- 
servation by its corresponding normal score in the pro- 
jection ("Gaussianization"). 

The process of repeatedly applying projection pursuit 
on the (structure removed) output of the previous pursuit 
can be continued until several applications result in finding 
no additional interesting structure. It should be noted that 
"Gaussianizing" a solution projection in this way at a par- 
ticular stage modifies the normality of (nonorthogonal) 
previous solution projections so that they no longer have 
exactly zero interest (unless backfitting is employed-see 
Friedman et al. 1984). Experience indicates, however, that 
the structure induced in previous solution projections by 
structure removal at later stages is small. 

Structure removal in two dimensions is more difficult. 
We need a transformation that takes a general bivariate 
distribution pap(X1, X2) to the bivariate standard normal 

g(Xl, X2) = (1/2n)exp(- (a+ a ) / 2 ) .  (25) 

There is no difficulty in theory. One can transform one of 
the margins, say XI,  to normality via (17) and then trans- 
form each conditional orthogonal marginal p(X2 I XI) to 
normality [again via (17)l. But this prescription does not 
lead to a practical algorithm for application to (bivariate) 
data. A practical algorithm can be based on the obser- 
vation that all projections of a normal distribution are 
normal. The idea is to repeatedly Gaussianize rotated (about 

the origin) projections of the solution plane until they stop 
becoming more normal. 

Let 

X; = Xl cos y + X2 sin y 

Xi = X2cos y - Xl sin y (26) 

be a rotation about the origin through angle y. The dis- 
tributions of X; and X,' are then each transformed to nor- 
mality via (17). This process is repeated (on the previously 
transformed distributions) for several values of y (0, 7114, 
7118, 37118). This entire process is then repeated until the 
distributions stop becoming more normal. Any convenient 
index of (non) normality can be used. 

During the first few iterations the nonnormality de- 
creases rapidly in a monotonic fashion as the planar dis- 
tribution approaches joint normality. After approximate 
normality has been achieved, the value of the nonnor- 
mality index tends to oscillate with small amplitude on 
successive iterations, sometimes decreasing a small amount 
on the average. Convergence is defined when approximate 
stability has been achieved. Note that with finite samples 
absolute stability is impossible to achieve. Typically, the 
procedure takes from 5 to 15 complete iterations to con- 
verge. It produces bivariate data distributions that are quite 
close to normal. 

In analogy with the univariate case, let U be an or- 
thonormal (q x q) matrix with a and P (the linear com- 
binations determining the solution plane) as the first two 
rows. The linear transformation T = UZ performs a ro- 
tation aligning the first two new coordinates with a and 
p. Let O be a transformation that takes the joint distri- 
bution of Tl and T2 to standard normal (as described ear- 
lier) and is the identity transform on T3 ,.. T,. Then the 
transformation Z '  = UTO(UZ) transforms the solution 
(a,  p) plane to bivariate standard normal leaving all or- 
thogonal directions unchanged. Thus the joint distribution 
of Z and Z '  determines the same conditional distribution 
given aTZ and PTZ, 

with g(X) the standard normal and the denominator the 
joint distribution of aTZ and PTZ. 

Friedman and Tukey (1974) suggested two rudimentary 
forms of structure removal. One was to restrict later so- 
lutions to be orthogonal (with respect to the original co- 
ordinates and their scales) to previous solutions. This is 
clearly supplanted by the structure removal technique out- 
lined here. There is no reason to expect good views of the 
data to be orthogonal with respect to any prespecified 
metric. The second suggested method was applicable when 
the structure in the solution projection took the form of 
clustering. The idea was to isolate the clusters into separate 
subsamples and apply projection pursuit to each such iso- 
late individually. This could be iterated if clustering were 
found in subsequent solutions. This second structure re- 
moval technique (when applicable) can be viewed as com- 



255 Friedman: Exploratory Projection Pursuit 

plementary to the method outlined here. If there is clus- 
tering and it is largely hierarchical, then the isolation 
technique can provide a straightforward means for inter- 
preting this kind of structure. 

4. DENSITY ESTIMATION 
Exploratory projection pursuit as described in the pre- 

ceding two sections can be incorporated into a multivariate 
density estimation procedure. Its properties (for one-di- 
mensional projection pursuit) are similar to the projection 
pursuit density estimation procedure of Friedman et al. 
(1984) and the projection pursuit density approximation 
techniques of Huber (1985). But its computational aspects 
are considerably more attractive. 

The projection pursuit strategy outlined in the preceding 
two sections (distribution version) consists of finding the 
least normal projection p,,(aTZ) of the probability density 
p(Z) by maximizing a measure of nonnormality (9). The 
procedure is then repeated on the density 

PI(^) = p(Z)g(aTZ)lp,,(aTZ) 

[see (21)], obtaining a second solution aTZ. The distri- 
bution is again modified, 

PAZ) = pl(Z)g(aTZ)/pii)(a,TZ) 

and so on. Here p&t)(arZ) is the univariate marginal den- 
sity of aTZ under the joint density pl(Z). At the Kth 
iteration one has 

The quantity in the denominator, p&:-')(a;Z), is the mar- 

negativity. Substituting this into (29) we have for this 
(multivariate) density approximation 

- .  
with Ek-l[Pjk] being the expected value of the associated 
(adjacent) Legendre polynomial under pk-,(Z). A density 
estimate is obtained by estimating Ek-l[Pjk] by sample 
averages over the transformed variables 

[see (19)] obtained from the structure removal process 
during the projection pursuit. Thus 

Here Zo = Z, the original (sphered) data. 
This density approximation/estimate is strongly influ- 

enced by the main body of the data and will give poor 
(usually under-) estimates in the outlying tails. This is a 
result of the transformation (4), which compresses the tails 
into small intervals near the extremes of the interval (-1, 
1). Long-tailed (compared with the normal) projected 
(univariate) distributions will result in very sharp spikes 
in the transformed density pR(R) at the ends of the inter- 
val. These cannot be captured by a low to moderate degree 
(4 5 J 5 8) Legendre polynomial expansion that will sub- 
stantially underestimate them. This is how the projection 
index (9), (lo), and (16) achieves its robustness against 
long-tailed scatter. In addition, of course, the projection 
index (by design) will tend not to produce solutions for 
which the projected density has no other structure but long 

ginal density of ol,TZ under the joint distribution P ~ - ~ ( Z ) ,  tails. As a result the density approximation/estimate pro- 
with po(Z) = p(Z).  

At some point in the iterative process the projection 
pursuit algorithm cannot find a projection that deviates 
substantially from normality. This indicates that pK(Z) is 
approximately multivariate standard normal. We then take 
as our density approximation 

with 

The projected univariate densities pit-') can be approx- 
imated by any appropriate method. One possibility is to 
use the Legendre polynomial expansion associated with 
the projection index 

with Rk = 2@(aiZ) - 1 and Ek-,(.) the expected value 
under pk-,(Z). Truncation can be used to insure non- 

vided by (31) and (32) will focus on capturing the density 
variation in the central part of the distribution and will 
approximate its tails by the tails of the normal. Of course, 
there is no other method that produces accurate density 
estimates in the tails of a multivariate distribution either. 
It is interesting to note the connection between this ap- 
proach to projection pursuit density approximation and 
the "analytic" approach proposed by Huber (1985). 

It is possible to base a density approximation/estimation 
procedure on the two-dimensional algorithm in direct anal- 
ogy with the development of the one-dimensional proce- 
dure described previously. But it might not work as well 
as the one-dimensional algorithm (for this purpose) be- 
cause of its increased complexity. 

5. OPTIMIZATION STRATEGY 
Although it is an engineering detail, the technique used 

for maximizing the (one- and two-dimensional) projection 
index strongly influences both the statistical and the com- 
putational aspects of the procedure. The statistical power 
of the method is reflected in its ability (for a given sample 
size and data dimension) to find substantive maxima of 
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the projection index. As observed by Switzer (1970) there 
are "an almost inevitable multiplicity of decidedly sub- 
optimal local maxima" mostly caused by sampling fluc- 
tuations. This can distract a projection pursuit algorithm 
from finding important views (substantive maxima). These 
pseudomaxima can be visualized as a high-frequency ripple 
superimposed on the main variational structure of the ob- 
jective function (projection index). The amplitude of these 
ripples increases with increasing dimension and decreasing 
sample size. The extent to which the optimization pro- 
cedure can ignore ("step over") these pseudomaxima, and 
thus avoid being trapped by them, determines to a great 
extent its statistical power. 

On very smooth objective functions the most powerful 
optimization methods [steepest descent, conjugate gra- 
dients, quasi-Newton (see Gill, Murray, and Wright 1981)] 
involve the use of first derivatives. This is why the ability 
to rapidly compute derivatives was a design goal for our 
projection index. These methods very effectively (rapidly 
and accurately) find the first maximum of an objective 
function uphill from a starting point. Unfortunately, when 
applied to a projection index with the ripple phenomenon 
described previously, this will very likely be a pseudo- 
maximum, unless the starting point is within the domain 
of attraction of a substantive maximum. The optimization 
strategy used by Friedman and Tukey (1974) did not em- 
ploy (exact) derivatives and took fairly large steps in its 
search for a maximum. This gave it some robustness against 
pseudomaxima at the expense of considerable computa- 
tional effort. 

We employ a hybrid optimization strategy. It begins with 
a simple (coarse stepping) optimizer that is designed to 
very rapidly get close to (within the domain of attraction) 
of a substantive maximum. A gradient method (quasi- 
Newton) is then used to quickly converge to the solution. 

We begin with the maximization of the one-dimensional 
index I(a) with respect to the q components of a (a, . . 
aq). As a first step I(a) is maximized over the coordinate 
axes a = el (1 5 i 5 q). Note that since we are working 
with the sphered data, 2, these axes are in fact the prin- 
cipal component directions when referenced to the original 
data, Y (1). Let a*be the resulting maximizing axis. Start- 
ing with this direction the following optimization algorithm 
is performed: 

Loop: 
I, = I(a*) 
For i = 1to q do: 

f +  = 1 [ ( 1 / ~ ) ( a *+ e,)l(l + aT)li2] 
f - = 1 [ ( 1 / ~ ) ( a *- ei)l(l - aT)li2] 

I f f +  > f - thenf = f + ; s  = +1 
else f = f - ; s  = -1 

end If 
If f > I(a*) then 

a* t ( l / f i ) ( a *  + s . ei)l(l + s . aT)li2 
end If 

end For 
If I(a*) = I. then done 

end Loop (33) 
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This search algorithm takes large steps, and thus it can- 
not be expected to converge to the value of a*at a max- 
imum of I(a). Because of its coarse stepping, however, it 
is much less likely than a gradient method to be trapped 
on pseudomaxima, thereby allowing it to coverge in the 
vicinity of a substantive maximum. This algorithm typically 
requires from two to four passes over the coordinates (ex- 
ecutions of the For loop) to converge. 

Starting with the value of a*obtained upon convergence 
of (33), a gradient-directed optimization method is then 
employed to rapidly ascend to a maximum of the projec- 
tion index I(a). We have employed both steepest-ascent 
and quasi-Newton methods with comparable results. 

The maximization of the two-dimensional index I (a ,  /3) 
is done in an analogous manner. First, it is maximized 
over the q(q - 1)/2 pairs of coordinate axes, a = ei, /3 
= ei (2 5 i 5 q, 1 5 j 5 i). Then, starting with the best 
coordinate pair, an algorithm analogous to (33) is exe- 
cuted. In this algorithm the For loop is over 2q variables 
(the q components of a and the q components of p), and 
the constraint aTp= 0 must be maintained in addition to 
aTa= pTp= 1.Finally, after this procedure converges a 
gradient directed optimization is employed to rapidly find 
a maximum. 

6. REMARKS 

6.1 Robustness 

The one- and two-dimensional projection indexes (10) 
and (16) are (by design) quite robust in that they are 
largely unaffected by extreme outliers. As a consequence 
the pursuit procedure is thus similarly robust. Structure 
removal is also clearly unaffected by outliers. The only 
nonrobust aspect of the procedure is the data sphering. It 
is based on the sample covariance matrix, which is strongly 
influenced by extreme outliers. Experience indicates that 
this projection pursuit procedure does not seem to be se- 
verely degraded when based on badly sphered data due 
to outliers. Nevertheless it seems sensible to use robust 
sphering when possible. 

There are several methods for robust estimation of a 
covariance matrix (see Devlin, Gnanadesikan, and Ket- 
tenring 1981). In fact there are several attractive (but com- 
putationally expensive) projection pursuit approaches (Chen 
and Li 1981). We have implemented a simple multivariate 
trimming method. It begins by sphering using all of the 
data. All observations for which ZTZ > D [see (I)] are 
deleted, and the remaining data are resphered. Here D is 
some prespecified threshold conveniently taken to be a 
high (-1 - .01/N) quantile of the chi-squared distribution 
on q degrees of freedom. This procedure can be iterated 
until no observations are deleted. Often D is adjusted so 
that no more than a certain (small) fraction of the data 
are deleted. 

6.2 Preliminary Dimensionallty Reduction 

The power of the projection pursuit algorithm to find 
important structure decreases with decreasing sample size 
and increasing dimension (see the next section). As re- 
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marked earlier, the covariance structure (linear associa- 
tions) often does not align with the nonlinear structure 
(clustering, nonlinear relationships) that we are seeking 
with our projection pursuit algorithm. A typical exception 
to this, however, has to do with the existence of a subspace 
containing only a tiny fraction of the data variation. 

Clearly, if a subspace contains no data variation, it can- 
not contain any structure. In this case the covariance ma- 
trix is singular, and the dimension of the search space is 
reduced to q < p (I), the rank of the covariance matrix. 
If there exists a (p - q)-dimensional subspace for which 
the data variation is very small compared with the com- 
plement subspace (covariance matrix nearly singular), then 
this subspace is usually dominated by the noise in the 
system and contains little data structuring. If this turns out 
to be the case, then the power of the projection pursuit 
procedure can be enhanced (and computation reduced) 
by restricting the pursuit search to the q-dimensional com- 
plement space. If not, any structure represented in the (p 
- q)-dimensional subspace will be ignored. But, in cases 
in which the data dimension is very high and the sample 
size is small, there may be no alternative but to restrict 
the projection pursuit search to the subspace spanned by 
the largest q principal component axes, where q is deter- 
mined by the sample size. Moreover, if a high-dimensional 
projection pursuit is unsuccessful in finding interesting 
structure, it might be worthwhile to restrict the search 
dimension (as described earlier) and try again. 

6.3 Preliminary Transformations 

Sometimes marginal distributions on the original mea- 
surement coordinates exhibit considerable (nonnormal) 
structure. For example, substantial skewness is often as- 
sociated with quantities that take on only positive values. 
Since inspection of the coordinate marginals should always 
be among the first parts of any data analysis, this structure 
is easily discovered. Often the data analyst would like to 
know if there is additional structure associated with com- 
binations of the variables. In this situation it makes sense 
to perform a transformation on highly structured coordi- 
nates, to remove the obvious structure, and then apply 
projection pursuit to the data after these selected trans- 
formations. For example, taking logarithms often removes 
positive skewness [see Mosteller and Tukey (1977, chap. 
5) for a catalog of such "first aid" transformations]. Of 
course, the structure along any marginal can be completely 
removed (from the point of view of projection pursuit) by 
replacing the coordinate values with their corresponding 
normal scores. Such "Gaussianized" variables would then 
only contribute to data structuring through their (nonlin- 
ear) associations with other variables. 

Sometimes measurement variables take on only a small 
number of distinct values. This can be caused by the nature 
of the variables themselves or by the measuring process. 
If the number of such values is small (compared with the 
sample size), the marginal distribution will exhibit many 
identical values or ties. If the number of distinct values is 
very small (less than five or so), the marginal distribution 

appears highly structured when compared with the normal. 
Gaussianization of such variables is a possible remedy; 
however, it is important that observations with the same 
value be ordered randomly so that associations between 
variables are not induced by the fact the original ordering 
of the observations may be associated with the values of 
some of the measurement: variables. Categorical (nominal) 
variables can be accommodated by introducing corre-
sponding (011) dummy variables along with randomly 
breaking the resulting ties and then Gaussianizing. 

6.4 Significance 

It is important to know whether a view is indicative of 
actual structure in the population or whether it is an arti- 
fact of sampling fluctuations. One way to assess this is 
to compare the corresponding solution projection index 
with values obtained by applying the procedure to Gauss- 
ian data. One can repeatedly generate random samples 
from a Gaussian distribution of the same dimension and 
cardinality as the data sample. The identical procedure 
that was applied to the data can then be applied to these 
Monte Carlo multivariate normal samples. A comparison 
of the resulting (null) distribution of projection index val- 
ues to the data sample value gives an indication of its 
significance. 

6.5 Adjusted Data Plots 

With the exception of the first, there are two projections 
of interest associated with each projection pursuit solution. 
One is the distribution of the data projected onto the 
solution line or plane. The other is the projection of the 
transformed data after removal of the structure associated 
with all previous solutions. In distributional terms, the 
former projection is the (joint) distribution of aTZ (and 
pTZ) under the original joint data density p(Z).  The latter 
projection is that distribution under pK-,(Z) (28), or the 
corresponding two-dimensional analog [see (27)], where 
K is the iteration number. At the Kth iteration, projection 
pursuit is applied to p,-,(Z) to find additional structure. 
The Kth solution projection index and the resulting pro- 
jection of the transformed data reflect the additional struc- 
ture adjusted for (not directly associated with) all previous 
solutions. We refer to these as adjusted data plots. They 
are the analog of residual plots in regression analysis. 

6.6 Interpretation 

The output of an exploratory projection pursuit is a 
collection of views of the multivariate data set. These views 
are selected to be those that independently best represent 
the nonlinear aspects of the joint density of the measure- 
ment variables as reflected by the data. The nonlinear 
aspects are emphasized by maximizing a robust affine in- 
variant projection index, whereas the independence is in- 
duced by the structure removal process. The data analyst 
has at his disposal the values of the parameters (variable 
loadings) that define each solution (line or plane) as well 
as the projected data density. This information can be used 



to try to interpret any nonlinear effects that might be un- 
covered. A visual representation of the projected data 
density (histogram, smoothed density estimate, scatter or 
contour plot) can be inspected to ascertain the nature of 
the effect (clustering, nonlinear relationship). The (scaled) 
variable loadings that define the corresponding solution 
indicate the relative strength that each (corresponding) 
variable contributes to the observed effect. 

In a two-dimensional projection pursuit the visual im- 
pact of the projected data density is insensitive to a par- 
ticular orientation (within the plane) of the orthogonal 
axes used to define the solution plane. A rigid rotation of 
the projected data about the origin of the solution plane 
provides the same picture of the nonlinear effects. There- 
fore, it makes sense to orient the defining axes so that the 
resulting variable loadings are most easily interpreted. This 
usually means maximizing the variance (or some other 
dispersion measure) of the (normed) variable loadings so 
as to give large loadings to as few variables as possible. 
Note that this "varimax" rotation is performed on the 
defining axes in the sphered variable representation Z, 
whereas the criterion to be maximized is the variance of 
the corresponding (normed) coefficients in the original 
data variables Y [see (I)]. Experience indicates that a most 
useful varimax rotation is one that maximizes the variance 
of the loadings associated with one of the defining axes 
(e.g., the vertical axis). 

Often projection pursuit solutions give- rise to small 
loadings on several variables. If all (original) variables Y;. 
(1 r j 5 p) have similar scales, then those with small 
loadings have correspondingly less effect in defining the 
solution. For interpretational purposes it is often impor- 
tant to know whether these variables have any importance 
to the observed structure. This is most easily determined 
by (manually) setting the small coefficients to 0 (in perhaps 
a reverse stagewise manner) and then reprojecting the 
data. 

6.7 	 Three- and Higher-Dimensional 
Projection Pursuit 

In the preceding sections one- and two-dimensional ex- 
ploratory projection pursuit algorithms were described. 
For data exploration the two-dimensional algorithm is likely 
to prove the most useful owing to the increased richness 
of structure that can be represented in two dimensions. In 
principle there is no upper limit to the dimensionality of 
the solution subspace. One could envision a projection 
pursuit for finding informative three- and higher-dimen- 
sional views, although it is not clear that the richness of 
the representation would increase as much as in going from 
one to two dimensions. Three-dimensional representa- 
tions can be viewed using kinematic graphic techniques 
such as rigid rotation (see Donoho, Donoho, and Gasko 
1986; Fisherkeller, Friedman, and Tukey 1975; McDonald 
1984). There are techniques for (approximate) viewing of 
densities in four dimensions (see Tukey and Tukey 1985). 
Among the more promising approaches are the "grand 
tour" methods (Buja and Asimov 1985). 
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A projection index for higher-dimensional pursuit is eas- 
ily developed in analogy with the two-dimensional index. 
The computational expense would be somewhat greater 
owing to the increased complexity of the product Legendre 
polynomial expansion and the increased number of opti- 
mization parameters. A more serious problem encoun-
tered with higher-dimensional projection pursuit is asso- 
ciated with the structure removal process. The difficulty 
lies in transforming the higher-dimensional (projected) 
distribution to joint standard normality. A strategy anal- 
ogous to that for the two-dimensional case would require 
a great many directions if they are chosen regularly on the 
unit sphere. A better strategy would be to choose a care- 
fully selected set of directions that depend on the actual 
(projected) data density. This is accomplished by running 
a one-dimensional projection pursuit algorithm in the higher- 
dimensional projected (solution) subspace. As discussed 
in Section 4, this in fact constructs a transformation of the 
original data density to standard normality. 

7. EXAMPLES 

In this section we present the results of running the one- 
and two-dimensional projection pursuit algorithms on data. 
The first two examples are simulation studies in which we 
try to assess the sample size requirements for detecting 
(known) structure as a function of increasing data dimen- 
sionality. The next three examples show the results of 
applying two-dimensional projection pursuit to real data 
sets of varying dimension and cardinality. In all examples 
no robustification was introduced into the sphering. To 
aid in interpretation all variables were standardized to zero 
mean and unit variance ("auto-scaled") before projection 
pursuit was applied. In the applications of two-dimensional 
projection pursuit the solutions were rotated to maximize 
the variance of the loadings on the second (vertical) de- 
fining axis (see Sec. 6.6). Execpt for the first real data 
example (states data, Sec. 7.3), the order of the Legendre 
expansion J [see (10) and (16)] was taken to be J = 6. 

-1 0 1 2 

Figure 1. Single Clustered Projection. 
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7.1 	 Single Clustered Projection in 
Several Dimenslonalities 

The purpose of this study is to get an idea of how the 
sample size requirements for finding a single structured 
projection increase with the dimensionality of the data 
sample. The population for this study is a Gaussian mix- 
ture. Two-thirds of the data are generated from a joint 
standard normal distribution, and the remaining one-third 
is normal with unit covariance matrix, but with location 
displaced six units in a random direction. The data are 
then scaled to have unit variance in this direction so that 
the structure is not reflected in the linear associations among 
the variables. 

Three experiments were performed at dimensionalities 
5, 10, and 15, respectively. Since (by design) the data 
structuring appears in only one view (the direction defined 
by the difference of the means), this example tests the 
projection pursuit algorithm's ability to find structure in 

the presence of an increasing number of pure noise vari- 
ables. From the point of view of projection pursuit this 
represents a difficult example, since the structure appears 
in only a single projection. Figure 1shows a histogram of 
a random sample of size 200 from this population projected 
onto the solution direction. 

At each dimensionality a series of one-dimensional pro- 
jection pursuit runs were made to get a rough idea of the 
threshold sample size at which the algorithm could reliably 
find the (known) structured projection. Since (by design) 
the projection pursuit algorithm has some difficulty at these 
(threshold) sample sizes, a measure of that difficulty is the 
iteration number (projection pursuit followed by structure 
removal) at which the algorithm discovers the known 
structure as opposed to spurious structure (pseudomax- 
ima) induced by the small sample size and/or high di- 
mensionality. If for a given sample size and dimensionality 
the algorithm repeatedly finds the known structure at the 
first iteration, then it is having little difficulty. If, on the 

Figure 2. lteration at Which the True Population Structure Was Found Figure 3. lteration at Which the True Population Structure Was Found 
for p = 5: (a) N = 45; (b) N = 60. for p = 10: (a) N = 200; (b) N = 300. 



260 

other hand, it finds several pseudomaxima (which are sub- 
sequently deflated by structure removal) before finding 
the real structured projection, this is an indication of some 
difficulty. 

Figures 2 through 4 show the distribution of the iteration 
number at which the true (population) structured projec- 
tion was found for 10 random samples for each of 6 sit- 
uations. Each situation consists of a specific dimensionality 
and sample size. Two sample sizes are shown for each 
dimensionality. The first (Figs. 2a, 3a, 4a) is a smaller 
sample size at which the algorithm seems to be having 
some difficulty and thus represents a minimal cardinality 
for finding the true structured projection at the corre-
sponding dimensions. The second (larger) sample size (Figs. 
2b, 3b, 4b) is seen to be large enough to find the true 
underlying structure fairly reliably. In all runs the deter- 
mination as to whether the algorithm found the actual 
underlying structure was unambiguous. The projection in- 
dex associated with this solution was typically four to five 

Figure 4. Iteration at Which the True Population Structure Was Found 
for p = 15: (a) N = 600; (b) N = 999. 
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times that of the spurious solutions (pseudomaxima), and 
the solution direction lined up very closely with the di- 
rection associated with the underlying (population) opti- 
mal projection. It seems that once the optimizer gets close 
to the true solution (via the course stepping algorithm) 
the gradient-directed search locks on to it very accurately 
(and rapidly). 

As seen from the figures, the required sample size in- 
creases with dimensionality fairly rapidly, but still much 
slower than the exponential rate associated with the "curse 
of dimensionality." A qualitative explanation of why the 
increase is as rapid as it is has to do with the numerical 
optimization. In most statistical methods the size of the 
spurious structure associated with sampling fluctuations 
has to be comparable to that of the real underlying (pop- 
ulation) structure to cause trouble. Here it need only be 
large enough (and numerous enough) to trap the numer- 
ical optimizer. Nevertheless, the sample size requirements 
are seen to be fairly modest for a search dimension of q 
5 10. For large samples, search dimensionalities of up to 
q = 15 or larger are possible (see Sec. 6.2). 

7.2 Needle in a Haystack 

The population for this example is again a Gaussian 
mixture. In this case, however, the two components of the 
mixture have the same location but different covariance 
structure. A random sample of size 175 is drawn from a 
10-dimensional standard normal. Added to this is a sample 
of 25 observations that are standard normal in a 4-dimen- 
sional subspace (through the origin) and spherical normal 
with covariance matrix ,0025 times the identity matrix in 
the 6-dimensional complement subspace. As in the pre- 
vious example the data are scaled so that this structure is 
not reflected in the covariances of the combined data. The 
problem is to discover the presence of the small (25 ob- 
servation) 4-dimensional needle in a 10-dimensional hay- 
stack, in analogy with finding a 1-dimensional needle in a 
3-dimensional haystack. 

To this end the 1-dimensional projection pursuit algo- 
rithm was applied to these data. This problem is difficult 
owing to high dimensionality (of the haystack) and the 
small cardinality of the needle. On the other hand the 
needle is visible (and thus can be found) in any projection 
that is orthogonal to its four-dimensional subspace. Figure 
5a shows such a projection of these data. 

Figure 5b shows the distribution of the iteration number 
at which the projection pursuit algorithm found the needle 
in 10 random samples from this Gaussian mixture. As in 
the previous example the determination of this was un- 
ambiguous. The results indicate that the algorithm was 
fairly well able to find a needle of this size. When the size 
of the needle is increased to 40 observations (out of 200), 
the algorithm always found it on the first iteration. 

7.3 States Data  

The data for this example are seven summary statistics 
associated with each of the 50 United States (Becker and 
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Figure 5. Needle in a Haystack: (a) a true solution projection; (b) iteration number at which a true solution was found. 

Chambers 1984). Table 1describes each of the seven vari- 
ables. Two-dimensional projection pursuit was applied to 
this data set. The results of the simulation study (sec. 7.1) 
indicate that the sample size (N = 50) is small for a pro- 
jection pursuit in seven dimensions. The eigenexpansion 
of the correlation matrix shows that 92% of the (auto- 
scaled) data variance is captured by the first four eigen- 
values. Therefore, we restrict the projection pursuit to the 
subspace spanned by the first principal components (q  = 

4). Owing to the small sample size, it is unlikely that we 
will be able to detect very fine structure, so the order of 
the Legendre expansion J [see (16)] was set to J = 2. 

To get an idea of the significance of the resulting so- 
lutions the identical procedure was applied to (different) 
random samples of size 50 drawn from a seven-dimen- 
sional standard normal distribution. An ordered list of the 
solution projection indices for 20 such (null) runs is given 
in part a of Table 2. 

When applied to the states data, four iterations of two- 
dimensional projection pursuit produced solution projec- 
tion indexes of .19, .08, .025, and .023, respectively. When 
referenced to the (estimated) null distribution represented 
in Table (part a), only the first value is seen to appear 
significant (at 5%). Table 3 presents the (varimax rotated) 
variable loadings ( aand p)  associated with the linear com- 

Table 1. Measurement Variables for the States Data 

Y, population estimate as of July 1, 1975 

Y2 average income (1974) 

Y, illiteracy rate (1970) 

Y, life expectancy (1 969-1 971) 

Y, homicide rate (1 976) 

Y, high-school graduation rate (1 970) 

Y, average number of days below freezing temperature (1931-1960) 


in capital or large city 

binations defining this solution plane. Figure 6 shows the 
data projected onto the solution plane. 

Viewing Figure 6 shows that the data appear to divide 
into two clusters mainly along the vertical direction. In 
addition, two outliers are seen in the upper right corner. 
A smaller cluster of 12 states seems fairly well separated 
from the larger group of 38 states. Table 1 and 3 show 
that the dominant loadings associated with the vertical 
direction (p) involve income, high-school graduation rate, 
and (negatively) illiteracy. This index seems to divide the 
states into two fairly distinct groups. The horizontal axis 
(a)is dominated by (negative) population, (negative) life 
expectancy, and (positive) homicide rate. Thus, increasing 
values along the horizontal direction involve generally lower 
population and life expectancy, and increasing homicide 
rate. The states in the upper cluster generally have a lower 
value of the horizontal index than those in the lower one, 
with the dramatic exception of the two outliers in the upper 
right corner. 

Table 4 lists the states of the smaller cluster in decreasing 

Table 2. Null Projection Index Distributions for the Data Examples 

(a) p = 7, q = 4, N = 50, J = 2 

.022, ,025, ,028, .028, .030, .030, ,030, .030, ,030, ,033 
,033, .038, .038, .045, .058, ,060, .060, .065, ,065, .098 

( b ) p  = 10, q = 10, N = 392, J = 6 

,043, .045, .048, ,050, ,050, ,053, ,053, .053, .053, .055 
,055, ,055, .058, ,058, ,060, ,060, ,060, .063, .070, ,070 

( c ) p  = 13, q = 13, N = 506, J = 6 

.043, ,043, .043, .045, ,045, ,045, .045, .045, ,045, .048 

.048, .048, ,048, .050, ,053, .053, .053, .053, ,055, .063 

NOTE: Projection index (of order J) values obtained by running two-dimensional projection 
pursuit in the subspace spanned by the largest q principal components, on 20 random samples 
of size N, drawn from a p-dimensional standard normal. 
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Figure 6.States Data: Solution Data Plot. 

value of the vertical index. The extreme outlier in the 
upper right corner is Alaska whereas the other outlying 
point (closest to it) corresponds to Nevada. 

7.4 Automobile Data 

This data set consists of 10 characteristics associated 
with 392 automobile models sold in the United States and 
reported in Consumer Reports from 1972 to 1982 (Donoho 
and Ramos 1982). Table 5 lists the 10 variables. The last 
three are dummy variables for the manufacturing origin 
of the automobile. These dummy variables have only two 
distinct values whereas the second variable has only five 
distinct values (the value three was encoded for rotary 
engine automobiles). Following the discussion in the last 
part of Section 6.3, we Gaussianize these variables after 
randomly ordering all observations corresponding to the 
same value. Part b of Table 2 lists in order of ascending 
value the (null) projection index values obtained by 2- 
dimensional projection pursuit on 20 random samples of 
size N = 392 drawn from a p = 10-dimensional standard 
normal distribution. 

Six iterations of Zdimensional projection pursuit on the 
automobile data produced projection index values of -31, 
.I5, .I3, .065, and '088, but the 
est value seem significant. The solutions corresponding to 
the largest two projection index values are presented in 

Table 3. First Projection Pursuit Solution for the States Data 

Solution 1: Projection index = .19 

a = .52, -26, .08, -.60, .41, -16, .31 
p = -.05, -73, -.30, -10, .O, .58, .I6 

Table 6 and Figure 7. Table 6 shows the (varimax rotated) 
loadings (a and /I)defining the two solution planes. Figure 
7a shows the data projected onto the first solution plane, 
and Figures 7b and7c show the adjusted and original data 
plots corresponding to the second solution (see Sec. 6.5). 

The first solution exhibits a strong clustering along the 
vertical index (approximately twice engine size minus fuel 
inefficiency) especially for moderate values of the hori- 
zontal index (approximately engine size minus weight). 
The second solution displays a distinctly trimodal distri- 
bution. Note that this structure is not a direct reflection 
of the clustering shown in the first solution owing to the 
structure removal. 

7,5 BostonNeighbomoodData 

This compilation of census data (Harrison and Ruben- 
feld 1978) is on its way to becoming a standard test bed 
for multivariate procedures. It was published in its entirety 
in Belsley, Kuh, and Welsch (1980). Each observation is 
a neighborhood (standard metropolitan statistical area) in 
the Boston area. Associated with each of these 506 census 

Table 4. States Composing the Smaller Cluster Associated wth  

Lower Values of the Vertical Axis, Listed in Descending 


Values of the Vertical Coordinate 


New Mexico -1.32 North Carolina -2.29
Texas -1.52 Alabama -2.72 
Tennessee -2.01 Arkansas -2.72 
West Virginia -2.03 South Carolina -2.98 
Georgia -2.08 Louisiana -3.15 
Kentucky -2.24 Mississippi -3.48 
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Table 5. Measurement Variables for Automobile Data 

YI gallons per mile (fuel inefficiency) 
y2 number of cylinders in engine 
y3 size of engine (cubic inches) 
y4 engine power (horse power) 
y5 automobile weight 
y6 acceleration (time from 0 to 60mph) 
y, model year 
y8 American (011) 
Yg European (011) 
YIo Japanese (011 ) 

tracts are 13 summary statistics that form the variables 
associated with each observation. Table 7 lists the quan- 
tities that compose the variable set. 

These data are well known to contain striking structure, 
much of which is exhibited in the coordinate marginal 
distributions. Following the discussion in Section 6.3 we 
removed the most obvious of this structure (extreme skew- 
ness in Yl and Yll) by the transformations Y; = log(Yl) 
and Yil = log(.4 - Yll). 

As with the previous examples, we first obtain an es- 
timate for the null distribution of projection index values 
by running Zdimensional projection pursuit on 20 random 
samples of size 506 from a 13-dimensional standard normal 
distribution. An ordered list of the values so obtained is 
shown in part c of Table 2. Note that none of the 20 values 
is greater than .07. Running 10 iterations of 2-dimensional 
projection pursuit on the Boston neighborhood data pro- 
duced solution projection index values of .69, .51, .40, 
.25, .34, .26, .31, .20, .22, and .lo, respectively. Clearly, 
all of these values but the last are highly signficant when 
referenced to the null distribution (Table 2, part c). As 
the high projection index values indicate, all of these views 
(but the last) exhibit striking structure. In the interest of 
brevity only the first five are shown. Table 8 lists the so- 
lution linear combinations, a p, defining the solution planes 
for each of the five solutions. 

Figure 8 shows the data projected onto the first solution 
plane. Figures 9-12 show both the adjusted and original 
data projections for each of the subsequent solutions. The 
first solution shows the data dividing into two groups on 
the second ("big lots") variable. Even after this structure 
is removed, the adjusted plots of the subsequent solutions 
show that there is considerable (additional) clustering and 
other nonlinear effects. In this case, projection pursuit has 
provided a great many views with which to begin exploring 
and understanding the data. 

Table 6. First Two Projection Pursuit Solutions for the 

Automobile Data 


Solution 1: Projection index = .31 

a = -.72, -.08, .56, .30, -.20, .lo,-.13, .00, .00, .02 
= .OO, -.01, .91, .14, -.39, .08, -.01, -.03, -.02, -.01 

Solution 2: Projection index = .15 

= -.lo,.la,-.70, -.IS, .22, -.06, -.17, -.23, .45, -.32 
/? = .03, .09, .OO, -.30, .53, -.Of, -.lo,.34, .19, -.69 

Figure 7. Car Data: (a) First Solution, Data Plot; (b) Second Solution, 
Adjusted Plot; (c) Second Solution, Data Plot. 

8. DISCUSSION 

The examples of the previous section are intended to 
illustrate that the exploratory projection pursuit proce- 
dures developed in the earlier sections can effectively dis- 
cover nonlinear data structuring in fairly high dimen- 
sionality with practical sample sizes. The aspects contributing 
to this are a projection index that measures nonnormality 
in the main body of the distribution rather than in the tails, 
an optimization algorithm that combines course stepping 
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Table 7. Neighborhood Variables Composing the 

Boston Housing Data 


yl log (per capita crime rate) 

y2 fraction of land zoned for big lots 

y3 fraction of nonretail business land 

Y4 (nitrogen oxide concentrati~n)~ ( p ~ h m ) ~  
YS (average number of rooms)z 

y6 fraction of owner-occupied units built before 1940 

y, log (weighted distances to five employment centers) 

y8 log (index of access to radial highways) 

y9 full-value property-tax rate 

K O  pupil-teacher ratio 

yl 1 log [.4- (fraction black population - .63)2] 

y12 log (fraction of lower status population) 

yl 3 log (median value of owner-occupied homes) 


followed by gradient-directed optimization, and an effec- Figure 8. Boston Neighborhood Data, First Solution: Data Plot. 
tive technique for structure removal. This algorithm is also 
much faster than the Friedman and Tukey (1974) imple-
mentation owing to the superior optimization procedure mensions, however, one can additionally see trimodality 
but, much more important, to the rapidly computable form (where the modes do not align along a common axis) as 
of the projection index (and its derivatives) using the (Le- well as arbitrary nonlinear relationships between the cho- 
gendre polynomial) moment expansion. This should help sen variables (linear combinations) determining the pro- 
make the method more practical to those with fairly mod- jection plane. The principal disadvantage of the two-di- 
est computing resources. mensional procedure is computational. In addition, for the 

For purposes of data exploration (as opposed to density special case of small data sets in which the data structuring 
estimation) the two-dimensional projection pursuit pro- is almost completely one-dimensional, two-dimensional 
cedure is likely to be more informative than the one-di- 
mensional algorithm. This is due to the increased richness 
of structure that can be portrayed in a single picture with 
two dimensions. Both algorithms have the ability to un- 
cover arbitrary nonlinear structure in the high-dimensional 
data density. The two-dimensional procedure, however, 
can often present the information in a format that is more 
easily visualized and interpreted. Features of the density 
such as bimodality (clustering), extreme skewness, sharp 
peaking, and some kinds of discontinuities can be seen in 
both one- and two-dimensional projections. In two di- 

Table 8. First Five Projection Pursuit Solution Planes for Boston 

Neighborhood Data 


Solution 1: Projection index = .69 


a = .13, -.41, -.50, -.24, -.04, -.02, .20, .26, .24, -.04, -.50, 


Solution 2: Projection index = .51 

a = .12, .23, -.76, -.06, .05, .01, .04, .09, .37, .41, -.09, .lo,.12 

8 = .17, .08, .O, .16, .03, -.13, -.08, .40, .83, .24, .06, -.01, -.I1 


Solution 3: Projection index = .40 


a = -.21, -.23, -.25, .16, -.19, -.09, .38, -.31, .70, .O,.04, .08, 

-.I5 


/? = .17, -.44, -.79, .07, -.03, -.02, .O, .lo,.29, -.23, .03, -.02, 

.03 


Solution 4: Projection index = .25 

= -.41, .18, -.23, .22, -.15, .66, .18, -.01, .30, .lo,.08,.lo,.30 
8 = .02, -.09, .13, .07, -.45, .O,.22, -.07, .05, .07, .09, .02, .84 

Solution 5: Projection index = .34 

a = -.03, -.12, -.60, -.01, -.08, .lo,-.42, .05, .06, 57, -.05, 
-.29, -.I2 Figure 9. Boston Neighborhood Data, Second Solution: (a) Adjusted 8 = .25, .06, -55, .71, -0, -.02, .17, -.07, -.29, .O, -.01, .O,.02 Plot; (b) Data Plot. 
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Figure 10. Boston Neighborhood Data, Third Solution: (a) Adjusted 
Plot; (b) Data Plot. 

projection pursuit can have less power than the one-di- 
mensional procedure. 

A powerful aid in interpreting the output of this pro- 
jection pursuit procedure would be a means for connecting 
the various solution plots (views of the data) so that par- 
ticular observations or groups of observations in one plot 
could be identified in the other views. One could then 
easily identify hierarchical clustering as well as many more 
types of complex structure from the several views provided 
by the different projection pursuit solutions. With a color 
terminal supporting dynamic graphics one could use the 
color m and n plotting technique (McDonald 1984) to great 
advantage. With a black and white terminal (again sup- 
porting dynamic graphics) the scatterplot brushing tech- 
niques (Becker and Cleveland 1985) would be very useful. 
In the absence of either of these alternatives the static m 
and n plotting technique (Diaconis and Friedman 1983) 
might be of some use. In the absence of these powerful 
graphical techniques the varying views can be connected 
by more laborious methods involving isolating points in 
one view and plotting their positions in the other views. 

For the solution projections presented in the previous 
section the structure (nonnormality) was fairly striking and 
easily recognized from simple point (scatter) plot repre- 
sentations of the projected densities. This is not always 
the case. Human visual perception is not very good at 

Figure 11. Boston Neighborhood Data, Fourth Solution: (a) Adjusted 
Plot; (b) Data Plot. 

distinguishing varying densities of points. Only the (local) 
presence or absence of points is easily recognized. Fairly 
striking density variation is often difficult to see in a scat- 
terplot. For this reason it is often helpful to view a graph- 
ical representation of a smoothed density estimate of the 
projected solution distributions. Structure easily missed in 
a scatterplot can be quite evident in such displays. There 
are several good methods for (smooth) density estimation 
in two dimensions (Scott 1985). These density estimates 
can be represented graphically as contour plots, color re- 
lief maps, or isometric projections of the three-dimen- 
sional surface of the (estimated) density versus the pro- 
jection coordinates. 

As seen in the examples, exploratory projection pursuit 
solutions can sometimes both discover interesting nonlin- 
ear effects and suggest straightforward interpretations for 
them. More often the interpretation of the discovered 
structure is elusive and requires a great deal of study and 
further investigation. In this sense applying projection pur- 
suit to a data set can often raise more questions than it 
(immediately) answers. This is the primary purpose of an 
exploratory technique. The discovery of strong (nonlinear) 
effects will usually cause the analyst to look harder at the 
data with hopefully a corresponding gain in insight and 
understanding. 

FORTRAN programs implementing the exploratory 



Figure 12. Boston Neighborhood Data, Fifth Solution: (a) Adjusted 
Plot; (b) Data Plot. 

projection pursuit procedures described are available from 
the author. 

[Received December 1985. Revised July 1986.1 
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