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Exploratory Projection Pursuit

JEROME H. FRIEDMAN*

A new projection pursuit algorithm for exploring multivariate data is
presented that has both statistical and computational advantages over
previous methods. A number of practical issues concerning its application
are addressed. A connection to multivariate density estimation is estab-
lished, and its properties are investigated through simulation studies and
application to real data. The goal of exploratory projection pursuit is to
use the data to find low- (one-, two-, or three-) dimensional projections
that provide the most revealing views of the full-dimensional data. With
these views the human gift for pattern recognition can be applied to help
discover effects that may not have been anticipated in advance. Since
linear effects are directly captured by the covariance structure of the
variable pairs (which are straightforward to estimate) the emphasis here
is on the discovery of nonlinear effects such as clustering or other general
nonlinear associations among the variables. Although arbitrary nonlinear
effects are impossible to parameterize in full generality, they are easily
recognized when presented in a low-dimensional visual representation
of the data density. Projection pursuit assigns a numerical index to every
projection that is a functional of the projected data density. The intent
of this index is to capture the degree of nonlinear structuring present in
the projected distribution. The pursuit consists of maximizing this index
with respect to the parameters defining the projection. Since it is unlikely
that there is only one interesting view of a multivariate data set, this
procedure is iterated to find further revealing projections. After each
maximizing projection has been found, a transformation is applied to
the data that removes the structure present in the solution projection
while preserving the multivariate structure that is not captured by it. The
projection pursuit algorithm is then applied to these transformed data
to find additional views that may yield further insight. This projection
pursuit algorithm has potential advantages over other dimensionality
reduction methods that are commonly used for data exploration. It fo-
cuses directly on the “‘interestingness” of a projection rather than indi-
rectly through the interpoint distances. This allows it to be unaffected
by the scale and (linear) correlational structure of the data, helping it
to overcome the “curse of dimensionality” that tends to plague methods
based on multidimensional scaling, parametric mapping, cluster analysis,
and principal components.

KEY WORDS: Exploratory data analysis; Multivariate analysis; Density
estimation; Data mapping; Statistical graphics; Multiparameter numer-
ical optimization. -

1. INTRODUCTION

Often, especially during the initial stages, the analysis
of a data set is exploratory. One wishes to gain insight and
understanding about the nature of the phenomena or sys-
tem that produced the data without imposing preconceived
notions or models. For multivariate data a first set of useful
summary statistics is based on the locations and scales of
the measurement variables as well as on their correlational
structure. Classical multivariate analysis has provided
powerful tools for their estimation (see Anderson 1958).
If the data closely follow an elliptically symmetric distri-
bution (such as the normal) in the p-dimensional variable
space, then these summary statistics usually provide nearly
all of the relevant information.

Sometimes, however, important structure in the data is
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not adequately captured by the linear associations (cor-
relations) among the variables. Such effects include clus-
tering of the observations into distinct groups and/or con-
centrations near nonlinear manifolds (which may be made

up of parts of linear manifolds). Knowledge of the exis-

tence and nature of such effects can sometimes help in
understanding the underlying phenomena. In contrast to
linear effects, the variety of shapes and other attributes
of nonlinearity are immense. It is thus impossible to pre-
specify all possibilities in advance and attempt to estimate
their corresponding parameters. Powerful approaches can
be based on making informative pictorial representations
of the data upon which the human gift for pattern rec-
ognition can be applied. By viewing (lower-dimensional)
representations of the data density, the analyst can often
detect striking as well as subtle structure that was impos-
sible to anticipate.

Unfortunately, the human gift for pattern recognition
is limited to low dimension. In addition, the technology
available to the analyst may place further restrictions on
the viewing dimension. Ordinary plotting is limited to two
dimensions. Sophisticated uses of motion and color with
computer graphics displays can increase the dimensionality
for viewing the data to three or perhaps a bit more. If one
is to graphically explore multivariate data, it is necessary
to find highly revealing lower-dimensional (one-, two-, or
three-dimensional) representations.

The most commonly used dimension-reducing transfor-
mations are linear projections. This is because they are
among the simplest and most interpretable. Moreover,
projections are smoothing operations in that structure can
be obscured by projection but never enhanced. Any struc-
ture seen in a projection is a shadow of an actual (usually
sharper) structure in the full dimensionality. In this sense
those projections that are the most revealing of the high-
dimensional data distribution are those containing the
sharpest structure. It is of interest then to pursue such
projections.

Friedman and Tukey (1974) presented an algorithm for
attempting this goal. The basic idea was to assign a nu-
merical index to every (one- or two-dimensional) projec-
tion that characterized the amount of structure present
(data density variation) in the projection. This index was
then maximized (via numerical optimization) with respect
to the parameters defining the projections. They termed
this method “projection pursuit.” Since all (density) es-
timation is performed in a univariate (or bivariate) setting
this method has the potential of overcoming the “curse of
dimensionality”’ (Bellman 1961) that afflicts such nonlin-
ear methods as parametric mapping (multidimensional
scaling) and cluster analysis that are based on interpoint
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distances. In addition, the projection index can (and often
should) be affine invariant (see Huber 1985). Therefore,
unlike (projections based on) principal components or fac-
tor analysis, it is unaffected-—and thus not distracted—by
the overall covariance structure of the data, which often
has little to do with clustering and other nonlinear effects.

Projection pursuit-solutions are seldom unique. Usually
data structuring in the full dimensionality will be observ-
able in several lower-dimensional projections and the
viewing of each can provide additional insight. It is thus
important that a projection pursuit algorithm find as many
of these views as possible. Each of these views will (it is
hoped) give rise to a substantive local maximum in the
projection index. One way to encourage the discovery of
several important views is to repeatedly invoke the opti-
mization procedure, each time removing from consider-
ation the solutions previously found. Structure removal is,
therefore, an important part of any successful projection
pursuit procedure.

This article presents a new projection pursuit algorithm.
Its projection index has superior sensitivity and similar
robustness properties to the Friedman-Tukey (1974) in-
dex, and it is much more rapidly computable. The opti-
mization procedure is faster and far more thorough. Fi-
nally, a systematic solution to the structure removal prob-
lem is presented.

2. THE PROJECTION INDEX

The projection index forms the heart of a projection
pursuit method. It defines the intent of the procedure.
Our intent is to discover interesting structured projections
of a multivariate data set. This rather vague goal must be
translated into a numerical index that is a functional of
the projected data distribution. This functional must vary
continuously with the parameters defining the projection
and have a large value when the (projected) distribution
is defined to be “interesting” and a small value otherwise.
The notion of interesting will obviously vary with the ap-
plication (see Huber 1985). As stated in the Introduction,
our goal is to discover additional structure not captured
by the correlational structure of the data. A way to insure

this is to make the projection index invariant to all non- -

singular affine transformations in the p-variable data space
(see Huber 1985; Jones 1983).

Although the notion of interesting may be difficult to
quantify, the converse notion of uninteresting seems more
straightforward. Huber (1985) and Jones (1983) gave strong
heuristic arguments to the effect that the (projected) nor-
mal distribution ought to be considered the least interest-
ing:

1. The multivariate normal density is elliptically sym-
metric and is totally specified by its linear structure (lo-
cation and covariances).

2. All projections of a multivariate normal distribution

are normal. Therefore, evidence for nonnormality in any
projection is evidence against multivariate joint normality.
Conversely, if the least normal projection is—not signif-
icantly different from—normal, then there is evidence for
joint normality of the measurement variables.
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3. Even if several linear combinations of variables are
(possibly highly) structured (nonnormal), most linear com-
binations (views) will be distributed approximately nor-
mally. Roughly, this is a consequence of the central limit
theorem (sums tend to be normally distributed). This no-
tion was made precise by Diaconis and Freedman (1984).

4. For fixed variance, the normal distribution has the
least information (Fisher, negative entropy).

Since our goal is the discovery of nonlinear structure,
it is principally the elliptical symmetry of the multivariate
normal that causes it to be regarded as least interesting
for our purposes. Depending on the context, other ellip-
tically symmetric distributions may serve as well or better.
But (as exploited below) the computational tractability of
the normal makes it an attractive choice among the family
of elliptically symmetric distributions.

Following this view, any test statistic for testing nor-
mality could serve as the basis for a projection index.
Different test statistics have the property of being more
(or less) sensitive to different alternative distributions. It
is the particular alternatives that are of interest here, since
(in the context of projection pursuit) they define the notion
of an interesting distribution. We must choose a statistic
that has preferential power against the (projected) distri-
butions that we are seeking with our projection pursuit
algorithm.

The most powerful tests for nonnormality emphasize
alternative distributions with heavy tails. Our intent is to
seek projected distributions that exhibit clustering (multi-
modality) or other kinds of nonlinear associations. Such
distributions differ from the normal mainly near the center
of the distribution, rather than in the tails. Therefore, we
seek a projection index (test statistic) that emphasizes de-
parture from normality in the main body of the distribution
and gives correspondingly less weight to the tails.

Since the projection index serves as the objective func-
tion for a multiparameter optimization, its computational
properties are crucial. For a given set of parameter values,
its value should be rapidly computable. It should be ab-
solutely continuous so that at least its first derivatives (with
respect to the parameters) exist everywhere. These deriv-
atives should also be rapidly computable.

The most computationally attractive projection indexes
are based on polynomial moments. No sorting of the pro-
jected values is required, and the values of the polynomials
as well as their derivatives are rapidly computed by means
of recursion relations. Since we are interested in departure
from normality, it would be natural to base a projection
index on the standardized (absolute) cumulants of the
projected distribution (see Huber 1985, p. 445). These are
the moments of the Hermite polynomials. Jones (1983)
suggested a projection index based on sums of squares of
standardized cumulants.

Despite their computational attractiveness, projection
indexes based on standardized cumulants are (unfortu-
nately) not useful for our application. This is because they
very heavily emphasize departure from normality in the
tails of the distribution. For example, a (projected) dis-
tribution with only slightly heavier than normal tails re-
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ceives a much higher index value than a highly clustered
projection.

It is possible to base a projection index on moments
having the required statistical properties. Such an index is
developed in this section. The main idea is to change scale
by first transforming the projected data using the normal
cdf and then comparing the transformed distribution with
the uniform.

Following Huber (1985), the algorithm will be described
first in its abstract version. That is, we imagine it operating
on a p-dimensional continuous probability distribution.
This makes some of the notation simpler. In our case, the
practical version (i.e., applied to data samples) is usually
obtained by simply replacing the expected value operation
with the corresponding data average. There are other mi-
nor differences that are pointed out at the appropriate
places in the description. Random variable terminology
will be used. Uppercase letters will denote random vari-
ables and their lowercase counterparts (usually with sub-
scripts) will denote realized values in the sample.

As a first computational economy, we begin by “spher-
ing” the data (Huber 1981; Jones 1983; Tukey and Tukey
1981). The idea is to perform a linear transformation (ro-
tation, location, and scale change) that removes (incor-
porates) all of the location, scale, and correlational struc-
ture. Let Y be a random variable in R?. We perform an
eigenvalue—eigenvector decomposition of the covariance
matrix

3 = E[(Y - EY)(Y - EY)"] = UDU",

with U an orthonormal and D a diagonal p X p matrix.
We then define new variables Z = D~2U(Y - EY).
More specifically, let g be the rank of 3. Then the ¢
components of Z are given by

p
Z;= (1/VD) D Uy(Y, - EY), 1=j=gq. (1)
i=1

The rows of U and D are assumed ordered in descending
(nonnegative) values of D;. By definition E[Z] = 0 and
E[ZZT] = I, the identity matrix.

The computational advantage gained by sphering is re-
flected by the fact that data constraints in the N-dimen-
sional observation space become geometrical constraints
in the p-dimensional variable space. First, any linear com-
bination X = ofZ = 2{; aZ; has variance var(X) =
afa = 2%, of; thus enforcing the constraint

ala =1 2)

insures that all linear combinations have unit variance.
Second, two linear combinations based on orthogonal vec-
tors are uncorrelated. That is, a’f = 0 implies that
E[(a"Z)(B'Z)] = 0.

All operations are performed on the sphered variables
Z. (Only at the end do we transform the solutions back
to reference the original coordinates Y.) This frees us from
having to compute variances in individual projections in
order to standardize density estimates during the numer-
ical optimization. Since sphering need only be done once
at the beginning, this results in a substantial computational
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saving. By definition the Z variables are affine invariant,
thus any (orthogonally invariant) projection index based
on them will inherit this property.

Although in most exploratory applications two or higher
dimensional projection pursuit will likely prove the more
informative, we begin by describing our projection index
for a one-dimensional projection pursuit. The concepts
underlying the two algorithms are nearly identical and the
notation is simpler for the one-dimensional case. The ex-
tension to two (and higher)- dimensions is seen to be
straightforward. o

In a one-dimensional exploratory projection pursuit we
seek a linear combination

X =ada'Z 3)

such that the probability density p,(X) is relatively highly
structured. As discussed earlier, we regard the (standard)
normal as the least structured density, and we are con-
cerned with finding departures that manifest themselves
in the main body of the distribution rather than in the tails.
To this end we begin by performing a transformation

R =29(X) - 1, “
with ®(X) being the standard normal cdf

®(X) = (1/V2n) f‘ 12 gt )

Clearly, R takes on values in the interval -1 = R =1,
and if X follows a standard normal distribution then R will
be uniformly distributed in this interval. Specifically,

it oo (Y] (2]

with g(X) being the standard normal density. Thus, a
measure of nonuniformity of R corresponds to a measure
of nonnormality of X. We take as a measure of nonuni-
formity the integral-squared distance between the prob-
ability density of R, pr(R), and the uniform probability
density, py(R) = 3, over the interval —1 = R = 1.

J’_ll [pR(R) - %]zdR = f_llp%(R) dR - % 6)

Our projection index I(«a) is taken to be a moment ap-
proximation to (6).
Expanding pr(R) in Legendre polynomials we have

©

[ A@an-i- ] [Soncfma-}

j=0
where the Legendre polynomials are defined by
P(R) = R
Pi(R) = [(2/ — DRP.«(R) = (j — DPR))) (7)
for j = 2. The coefficients are given by
2j+1 2j +1
4="2

[ BRpu(®) ar = L7 E(R)



252

so that

N =

ﬁl P¥(R)dR — = = 2(21‘ + DER[P(R))/2. (8)

For a uniform distribution U(-1, 1), E[P,(R)] = 0 for j
> 0.

Our projection index is obtained by truncating the sum
in (8) at order J,

(o) = ; 2j + DER[P(R)]/2. (©))

Note that this projection index measures departure from
normality even if the J-term expansion is not an accurate
approximation to pp(R), since it achieves its minimum
value (0) for X normally distributed (R uniform). Of course,
for finite J the (projected) normal is not the unique min-
imizer of I(a). Any distribution of X that after the trans-
formation (4) results in a distribution pg(R) with zero
values for its first J Legendre polynomial moments will
also be regarded as a least interesting distribution.

For a practical version of the algorithm operating on a
data sample, the expected values in (9) are estimated by
the corresponding sample averages. Substituting from (3)
and (4) we have

i@ =33 @i+ 0|53 pee@n) - 1| )

as the sample version of our projection index. This is to
be maximized with respect to the g components of « under
the constraint a’a = 1. Details of the optimization pro-
cedure are given in Section 5.

The projection index (10) can be computed fairly rap-
idly. Fast appoximations (to machine accuracy) for the
normal integral (5) exist (see Kennedy and Gentle 1980)
and are provided as built-in intrinsic functions by many
programming language compilers. The Legendre poly-
nomials to order J are quickly obtained via the recursion
relation (7).

For efficient optimization it is useful to have derivatives
of the objective function. These are easily obtained for
our projection index via the chain rule for differentiation.
The result is

ol 2

6ak_ \/5—7;}‘
x E[P(R)E[P/(R)e™**(Z, — aX)], (11)

with X given by (3) and R given by (4). The derivatives
of each Legendre polynomial with respect to its argument
is rapidly obtained by the recursion relation

Pi(R) = 1, P/(R) = RP/_i(R) + jP;_1(R), (12)

for j > 1. The derivative calculation (11) takes into account
the constraint a’a = 1 by keeping the gradient vector
V.I() orthogonal to the gradient of the constraint func-
tion V,(a’a) = 2a. This is the purpose of subtracting ;X
from Z, in the second expectation (11). The derivatives

J
@j+1
=1
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of I(a) (10) are obtained by applying sample averages in
place of the expectation operators.

The projection index for a two-dimensional projection
pursuit is developed in direct analogy with the one-di-
mensional index. We seek two linear combinations
X2 = ﬂ TZ, (13)
such that the joint distribution (probability density) p.s(Xi,
X)) is highly structured. Since we are interested in non-
linear structure we require the two linear combinations to
be uncorrelated, corr(X;, X;) = 0. As a consequence of
our definition of Z (data sphering) this constraint is equiv-
alent to requiring « to § to be orthogonal, o’ = 0. We
must also require that the variances in all projections be
equal. This is insured by the sphering and constraints o«
= BB = 1.

We regard the bivariate standard normal to be the least
structured joint distribution and are interested in depar-
tures that are manifest in the main body of the distribution
rather than in the tails. We begin by transforming the X;,
X, plane to the square (—1, 1) x (=1, 1) by means of

Ry =20(X) -1, R, =20(X;) -1, (14

with ®(X) defined by (5). If X;, X; have a joint standard
normal distribution, then R;, R, will be uniformly distrib-
uted on the square. We take as a measure of nonuniformity
the integral-square distance from the uniform

1 1 1 2
J. J. pR(Rb Rz) - = de dR2
1) 4
1 (1 1
= [ [ PR Ry dRiaR, — 5. (15)

Our projection index I(e, f) is taken as a product moment
approximation to (15). Expanding pr(R;, R;) in a product
Legendre expansion and proceeding in direct analogy with
the development of the one-dimensional index we have

L E 1
f f PR(Rl, Rz) dR — Z
-1J-1

S 3 @ + D@k + DEPRIPR] -

FNGPSN

with the Legendre polynomials defined by (7). Our bi-
variate projection index is obtained by truncating the ex-
pansion at order J,

I(a, p) = ; (2] + DE’[P(R,))/4

+ i 2k + 1)EYPy(Ry)]/4

™M~

+ JZ_} 2j + D2k + 1)

x EYP(R)Pi(Ry)]/4. (16)

As for the univariate index, derivatives of the bivariate
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index are easily obtained:
ol 5o
s = UV21) 3 @) + DE[P(R)]
m j=1
X E[P|(R)e"UPX(Z, ~ a,X; — BnX)]
JoJ-j
+ (UV2R) D Y (2 + D2k + 1)
j=1 k=1

X E[P(R,)P(R))]
X E[P}(R)PUR)e™(Z, — anXy — BuXo)],

3 inVEm) 'S @k + DE[PRY)]

X E[Pi(R)e""2X(Z, — a,X; — B,X,)]

+ (1/V2n) i 12] (2 + D2k + 1)

X E[P/(R;)P(R,)]

X E[P(R)Pi(R)e~"X(Z, — a,X; — B.X,)].

The quantities X, and X, are given by (13), and R; and
R, are given by (14). The data version of the index and
its derivatives are obtained by substituting sample averages
for the expectations. The derivatives account for the con-
straints (a’a = 78 = 1, a7 = 0) by keeping the gradient
vector simultaneously orthogonal to the gradients of the
three constraint functions.

The computation of the bivariate index is analogous to
that of the univariate index. For a corresponding order J
it is more expensive, since it and its derivatives contain
more terms. In addition, the optimization is with respect
to twice as many parameters. On the other hand, the bi-
variate solutions often contain considerably more infor-
mation concerning the multivariate density.

There is one (user-defined) parameter associated with
the (one- or two-dimensional) projection index. It is the
order J((9), (16)) of the polynomial expansion of the
(transformed) density. It controls the amount of smooth-
ness imposed on the approximation. Limited experience
indicates that the results are insensitive to the value chosen
for J over a fairly wide range (4 = J =< 8) except for very
small sample size. Intuition suggests that the value of J
should increase with the sample size, but there are as yet
no specific guidelines. The computation increases linearly
with increasing J for one-dimensional projection pursuit
and quadratically for two-dimensional projection pursuit.

3. STRUCTURE REMOVAL

The purpose of the optimization algorithm (detailed in
Sec. 5) is to find a substantive maximum of the projection
index. The corresponding (one- or two-dimensional) pro-
jection will (we hope) present an informative view of the
p-dimensional data density. It is unlikely, however, that
there is only one such informative view. Usually, the non-
normality of the full p-dimensional data distribution will
be manifest in several one- or two-dimensional projec-
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tions. Each of these projections can help in the identifi-
cation and interpretation of the effects. Moreover, there
is no reason to believe that the algorithm will find the most
informative of these views first. For these reasons it is
important that the projection pursuit procedure find as
many of these informative views as possible.

A variety of approaches for accomplishing structure re-
moval have been suggested (see Huber 1985, p. 449). The
most systematic of these (for one-dimensional projection
pursuit) is the recursive approach associated with the pro-
jection pursuit density estimation procedure (Friedman,
Stuetzle, and Schroeder 1984). After an interesting pro-
jection has been found (solution maximizing the projection
index), remove the structure that makes the projection
interesting (deflate that maximum of the objective func-
tion) and then remaximize the projection index. This can
be done repeatedly. In the projection pursuit density es-
timation approach this was implemented using a complex
strategy for maintaining and updating an estimate for the
p-dimensional probability density and involved Monte Carlo
sampling. It is thus computationally quite expensive. We
present a simple procedure for structure removal that is
computationally much faster and has a straightforward im-
plementation for two-dimensional projections.

By definition of our projection index, a view (projected
density) has zero interest if it is standard normal. There-
fore, the structure can be removed by applying a trans-
formation that takes the (projected) density to a standard
normal distribution. We thus require a transformation of
the g variables, the result of which renders a standard
normal distribution in the projected subspace, but leaves
all orthogonal directions unchanged. We develop such a
transformation below.

We first describe the procedure for a one-dimensional
projection. Let X = a’Z be a one-dimensional projection
(var(X) = 1) and F,(X) be its cdf. Then applying the
transformation

X' = ®7(F(X)) 17)

to X results in a standard normal distribution for X'. Here
®-!is the inverse of the standard normal cdf (5).

Let U be an orthonormal (¢ X ¢) matrix with « (the
projection pursuit solution) as the first row. Then applying
the linear transformation T = UZ results in a rotation
such that the new first coordinate is T} = a’Z = X. Let
O be a (vector) transformation (with components 6, - ,)
that takes T, to a standard normal distribution and is the

identity transformation on T, -+ T,:

0,(Ty) = ®'(F.(Ty))

0(T) =T, 2=j=gq. (18)
Then the transformation
Z' = U0(UZ) (19)

transforms the projection X = a’Z to a standard normal
distribution leaving all orthogonal directions unchanged.
We then reapply the maximization procedure with a pro-
jection index based on Z'.




254

By definition, the g-variate distribution of Z' exhibits
no structure in the projection X' = a’Z’ (zero value of
the projection index). The joint distribution of Z, p(Z),
and that of Z’, p'(Z’'), determine the same conditional
density given a’Z:

p(-|a’Z) = p'(- | a"2Z"). (20)

In fact,

p'(Z') = p(Z")[g(a"Z")Ipa"Z")), @n

with p, the (univariate) density of a’Z and g the standard
normal density

g(X) = (1/V2n)e- ¥~ (22)

In this sense the transformation (19) produces a new (vec-
tor-valued random) variable Z' whose distribution is as
close as possible to that of Z under the constraint that its
marginal distribution along « be normal (zero interest). It
also produces the closest distribution under this constraint
in the sense of the relative entropy distance measure

flog(f;)p dZ = flog(%")pa d(a’X) = min (23)

(see Huber 1985).

The data sample version of (17) is easily implemented.
One substitutes the empirical distribution Fy(X)(X =
a’Z) for the distribution function F,(X):

x/ = @ Y(Fy(x)) = 7Y (r(x)/N) — 1/2N], (24)

with r(x;) being the rank of x; among the N (projected)
observations. This transformation simply replaces each ob-
servation by its corresponding normal score in the pro-
jection (“‘Gaussianization”).

The process of repeatedly applying projection pursuit
on the (structure removed) output of the previous pursuit
can be continued until several applications result in finding
no additional interesting structure. It should be noted that
“Gaussianizing” a solution projection in this way at a par-
ticular stage modifies the normality of (nonorthogonal)
previous solution projections so that they no longer have
exactly zero interest (unless backfitting is employed—see
Friedman et al. 1984). Experience indicates, however, that
the structure induced in previous solution projections by
structure removal at later stages is small.

Structure removal in two dimensions is more difficult.
We need a transformation that takes a general bivariate
distribution p.s(X;, X;) to the bivariate standard normal

g(X,, X;) = (1/2mexp(— (Xt + X3)/2).  (25)

There is no difficulty in theory. One can transform one of
the margins, say X, to normality via (17) and then trans-
form each conditional orthogonal marginal p(X, | X;) to
normality [again via (17)]. But this prescription does not
lead to a practical algorithm for application to (bivariate)
data. A practical algorithm can be based on the obser-
vation that all projections of a normal distribution are
normal. The idea is to repeatedly Gaussianize rotated (about
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the origin) projections of the solution plane until they stop
becoming more normal.
Let

X; = X,cosy + X;sin y

X, = X,cosy — X;siny (26)

be a rotation about the origin through angle y. The dis-
tributions of X| and X, are then each transformed to nor-
mality via (17). This process is repeated (on the previously
transformed distributions) for several values of y (0, 7/4,
n/8, 3n/8). This entire process is then repeated until the
distributions stop becoming more normal. Any convenient
index of (non) normality can be used.

During the first few iterations the nonnormality de-
creases rapidly in a monotonic fashion as the planar dis-
tribution approaches joint normality. After approximate
normality has been achieved, the value of the nonnor-
mality index tends to oscillate with small amplitude on
successive iterations, sometimes decreasing a small amount
on the average. Convergence is defined when approximate
stability has been achieved. Note that with finite samples
absolute stability is impossible to achieve. Typically, the
procedure takes from 5 to 15 complete iterations to con-
verge. It produces bivariate data distributions that are quite
close to normal.

In analogy with the univariate case, let U be an or-
thonormal (¢ X ¢) matrix with « and g (the linear com-
binations determining the solution plane) as the first two
rows. The linear transformation T = UZ performs a ro-
tation aligning the first two new coordinates with a and
B. Let © be a transformation that takes the joint distri-
bution of T; and T, to standard normal (as described ear-
lier) and is the identity transform on T3 -+ T,. Then the
transformation Z' = UT@(UZ) transforms the solution
(a, f) plane to bivariate standard normal leaving all or-
thogonal directions unchanged. Thus the joint distribution
of Z and Z’ determines the same conditional distribution
given a’Z and f7Z,

g(a"Z")e(BZ")
pu(’Z', BTZ")°
with g(X) the standard normal and the denominator the
joint distribution of a’Z and SZ.

Friedman and Tukey (1974) suggested two rudimentary
forms of structure removal. One was to restrict later so-
lutions to be orthogonal (with respect to the original co-
ordinates and their scales) to previous solutions. This is
clearly supplanted by the structure removal technique out-
lined here. There is no reason to expect good views of the
data to be orthogonal with respect to any prespecified
metric. The second suggested method was applicable when
the structure in the solution projection took the form of
clustering. The idea was to isolate the clusters into separate
subsamples and apply projection pursuit to each such iso-
late individually. This could be iterated if clustering were
found in subsequent solutions. This second structure re-
moval technique (when applicable) can be viewed as com-

p'(Z") = p(Z") @7
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plementary to the method outlined here. If there is clus-
tering and it is largely hierarchical, then the isolation
technique can provide a straightforward means for inter-
preting this kind of structure.

4. DENSITY ESTIMATION

Exploratory projection pursuit as described in the pre-
ceding two sections can be incorporated into a multivariate
density estimation procedure. Its properties (for one-di-
mensional projection pursuit) are similar to the projection
pursuit density estimation procedure of Friedman et al.
(1984) and the projection pursuit density approximation
techniques of Huber (1985). But its computational aspects
are considerably more attractive.

The projection pursuit strategy outlined in the preceding
two sections (distribution version) consists of finding the
least normal projection p, (of Z) of the probability density
p(Z) by maximizing a measure of nonnormality (9). The
procedure is then repeated on the density

pi(Z2) = p(Z)g(afZ)/p.(afZ)

[see (21)], obtaining a second solution afZ. The distri-
bution is again modified,

pAZ) = pi(Z)g(efZ)/p{)(aiZ)
_ g(afZ)g(afZ)
P& (adZ)pN(afZ)”

and so on. Here p{)(a}Z) is the univariate marginal den-
sity of afZ under the joint density p;(Z). At the Kth
iteration one has

px(Z) = p(Z) II ;;(ig(lif?z") :

k=1

(28)

The quantity in the denominator, p~(afZ), is the mar-
ginal density of ofZ under the joint distribution p,_,(Z),
with py(Z) = p(Z).

At some point in the iterative process the projection
pursuit algorithm cannot find a projection that deviates
substantially from normality. This indicates that px(Z) is
approximately multivariate standard normal. We then take
as our density approximation

P2 - g [ o
with
8(2) = exp(—Z7Z/2). (30)

oL

The projected univariate densities p%~? can be approx-
imated by any appropriate method. One possibility is to
use the Legendre polynomial expansion associated with
the projection index

P4 (efZ) = g(ef2) 2 2/ + DE[FRIIP(R)/2,
=0
with R, = 2®(afZ) — 1 and E,_,(-) the expected value
under p,_,(Z). Truncation can be used to insure non-
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negativity. Substituting this into (29) we have for this
(multivariate) density approximation

P2 - @ 11 [2 @+ 1)

X Ex[Pu] P2P((Z) - 1)]/2, (31)

with E,_,[ P;] being the expected value of the associated
(adjacent) Legendre polynomial under p,_,(Z). A density
estimate is obtained by estimating E,_,[P;] by sample
averages over the transformed variables

Zyy = k—1®k—1( Uk-—lzk—Z)

[see (19)] obtained from the structure removal process
during the projection pursuit. Thus

1N
= N% Pj[zq)(azz(k—l)i) - 1].

Here Z, = Z, the original (sphered) data.

This density approximation/estimate is strongly influ-
enced by the main body of the data and will give poor
(usually under-) estimates in the outlying tails. This is a
result of the transformation (4), which compresses the tails
into small intervals near the extremes of the interval (—1,
1). Long-tailed (compared with the normal) projected
(univariate) distributions will result in very sharp spikes
in the transformed density pr(R) at the ends of the inter-
val. These cannot be captured by a low to moderate degree
(4 = J = 8) Legendre polynomial expansion that will sub-
stantially underestimate them. This is how the projection
index (9), (10), and (16) achieves its robustness against
long-tailed scatter. In addition, of course, the projection
index (by design) will tend not to produce solutions for
which the projected density has no other structure but long
tails. As a result the density approximation/estimate pro-
vided by (31) and (32) will focus on capturing the density
variation in the central part of the distribution and will
approximate its tails by the tails of the normal. Of course,
there is no other method that produces accurate density
estimates in the tails of a multivariate distribution either.
It is interesting to note the connection between this ap-
proach to projection pursuit density approximation and
the “analytic” approach proposed by Huber (1985).

It is possible to base a density approximation/estimation
procedure on the two-dimensional algorithm in direct anal-
ogy with the development of the one-dimensional proce-
dure described previously. But it might not work as well
as the one-dimensional algorithm (for this purpose) be-
cause of its increased complexity.

E. [Py] (32)

5. OPTIMIZATION STRATEGY

Although it is an engineering detail, the technique used
for maximizing the (one- and two-dimensional) projection
index strongly influences both the statistical and the com-

. putational aspects of the procedure. The statistical power

of the method is reflected in its ability (for a given sample
size and data dimension) to find substantive maxima of
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the projection index. As observed by Switzer (1970) there
are “an almost inevitable multiplicity of decidedly sub-
optimal local maxima” mostly caused by sampling fluc-
tuations. This can distract a projection pursuit algorithm
from finding important views (substantive maxima). These
pseudomaxima can be visualized as a high-frequency ripple
superimposed on the main variational structure of the ob-
jective function (projection index). The amplitude of these
ripples increases with increasing dimension and decreasing
sample size. The extent to which the optimization pro-
cedure can ignore (“step over”’) these pseudomaxima, and
thus avoid being trapped by them, determines to a great
extent its statistical power.

On very smooth objective functions the most powerful
optimization methods [steepest descent, conjugate gra-
dients, quasi-Newton (see Gill, Murray, and Wright 1981)]
involve the use of first derivatives. This is why the ability
to rapidly compute derivatives was a design goal for our
projection index. These methods very effectively (rapidly
and accurately) find the first maximum of an objective
function uphill from a starting point. Unfortunately, when
applied to a projection index with the ripple phenomenon
described previously, this will very likely be a pseudo-
maximum, unless the starting point is within the domain
of attraction of a substantive maximum. The optimization
strategy used by Friedman and Tukey (1974) did not em-
ploy (exact) derivatives and took fairly large steps in its
search for a maximum. This gave it some robustness against
pseudomaxima at the expense of considerable computa-
tional effort.

We employ a hybrid optimization strategy. It begins with
a simple (coarse stepping) optimizer that is designed to
very rapidly get close to (within the domain of attraction)
of a substantive maximum. A gradient method (quasi-
Newton) is then used to quickly converge to the solution.

We begin with the maximization of the one-dimensional
index I(a) with respect to the g components of a (e - *
a,). As a first step /() is maximized over the coordinate
axes a = ¢; (1 =i = q). Note that since we are working
with the sphered data, Z, these axes are in fact the prin-
cipal component directions when referenced to the original
data, Y (1). Let a* be the resulting maximizing axis. Start-
ing with this direction the following optimization algorithm
is performed:

Loop:
10 = I(a*)
Fori = 1to g do:
fi = 1[(1/\\/@(01* + e)/(1 + af)”?]
f- = [A/V2)(a* - &)/(1 - af)]
Iff,>f_thenf =f,;5s=+1
elsef =f_;5s = -1
end If
If f > I(a*) then
a*f « (1/V2)(a* + 5 e)/(1 + 5+ af)”
end If
end For
If I(a*) = I, then done

end Loop (33)
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This search algorithm takes large steps, and thus it can-
not be expected to converge to the value of a* at a max-
imum of /(). Because of its coarse stepping, however, it
is much less likely than a gradient method to be trapped
on pseudomaxima, thereby allowing it to coverge in the
vicinity of a substantive maximum. This algorithm typically
requires from two to four passes over the coordinates (ex-
ecutions of the For loop) to converge.

Starting with the value of o* obtained upon convergence
of (33), a gradient-directed optimization method is then
employed to rapidly ascend to a maximum of the projec-
tion index I(a). We have employed both steepest-ascent
and quasi-Newton methods with comparable results.

The maximization of the two-dimensional index I(«, )
is done in an analogous manner. First, it is maximized
over the g(q — 1)/2 pairs of coordinate axes, a = e,
= ¢ (2 =i=gq,1=j=i). Then, starting with the best
coordinate pair, an algorithm analogous to (33) is exe-
cuted. In this algorithm the For loop is over 2g variables
(the g components of a and the g components of #), and
the constraint a’f = 0 must be maintained in addition to
a’a = B7B = 1. Finally, after this procedure converges a
gradient directed optimization is employed to rapidly find
a maximum.

6. REMARKS
6.1 Robustness

The one- and two-dimensional projection indexes (10)
and (16) are (by design) quite robust in that they are
largely unaffected by extreme outliers. As a consequence
the pursuit procedure is thus similarly robust. Structure
removal is also clearly unaffected by outliers. The only
nonrobust aspect of the procedure is the data sphering. It
is based on the sample covariance matrix, which is strongly
influenced by extreme outliers. Experience indicates that
this projection pursuit procedure does not seem to be se-
verely degraded when based on badly sphered data due
to outliers. Nevertheless it seems sensible to use robust
sphering when possible.

There are several methods for robust estimation of a
covariance matrix (see Devlin, Gnanadesikan, and Ket-
tenring 1981). In fact there are several attractive (but com-
putationally expensive) projection pursuit approaches (Chen
and Li 1981). We have implemented a simple multivariate
trimming method. It begins by sphering using all of the
data. All observations for which Z7Z > D [see (1)] are
deleted, and the remaining data are resphered. Here D is
some prespecified threshold conveniently taken to be a
high (~1 — .01/N) quantile of the chi-squared distribution
on g degrees of freedom. This procedure can be iterated
until no observations are deleted. Often D is adjusted so
that no more than a certain (small) fraction of the data
are deleted.

6.2 Preliminary Dimensionality Reduction

The power of the projection pursuit algorithm to find
important structure decreases with decreasing sample size
and increasing dimension (see the next section). As re-
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marked earlier, the covariance structure (linear associa-
tions) often does not align with the nonlinear structure
(clustering, nonlinear relationships) that we are seeking
with our projection pursuit algorithm. A typical exception
to this, however, has to do with the existence of a subspace
containing only a tiny fraction of the data variation.
Clearly, if a subspace contains no data variation, it can-
not contain any structure. In this case the covariance ma-
trix is singular, and the dimension of the search space is
reduced to ¢ < p (1), the rank of the covariance matrix.
If there exists a (p — g)-dimensional subspace for which
the data variation is very small compared with the com-
plement subspace (covariance matrix nearly singular), then
this subspace is usually dominated by the noise in the
system and contains little data structuring. If this turns out
to be the case, then the power of the projection pursuit
procedure can be enhanced (and computation reduced)
by restricting the pursuit search to the g-dimensional com-
plement space. If not, any structure represented in the (p
— g)-dimensional subspace will be ignored. But, in cases
in which the data dimension is very high and the sample
size is small, there may be no alternative but to restrict
the projection pursuit search to the subspace spanned by
the largest g principal component axes, where g is deter-
mined by the sample size. Moreover, if a high-dimensional
projection pursuit is unsuccessful in finding interesting
structure, it might be worthwhile to restrict the search
dimension (as described earlier) and try again.

6.3 Preliminary Transformations

Sometimes marginal distributions on the original mea-
surement coordinates exhibit considerable (nonnormal)
structure. For example, substantial skewness is often as-
sociated with quantities that take on only positive values.
Since inspection of the coordinate marginals should always
be among the first parts of any data analysis, this structure
is easily discovered. Often the data analyst would like to
know if there is additional structure associated with com-
binations of the variables. In this situation it makes sense
to perform a transformation on highly structured coordi-
nates, to remove the obvious structure, and then apply
projection pursuit to the data after these selected trans-
formations. For example, taking logarithms often removes
positive skewness [see Mosteller and Tukey (1977, chap.
5) for a catalog of such “first aid” transformations]. Of
course, the structure along any marginal can be completely
removed (from the point of view of projection pursuit) by
replacing the coordinate values with their corresponding
normal scores. Such “Gaussianized” variables would then
only contribute to data structuring through their (nonlin-
ear) associations with other variables.

Sometimes measurement variables take on only a small
number of distinct values. This can be caused by the nature
of the variables themselves or by the measuring process.
If the number of such values is small (compared with the
sample size), the marginal distribution will exhibit many
identical values or ties. If the number of distinct values is
very small (less than five or so), the marginal distribution
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appears highly structured when compared with the normal.
Gaussianization of such variables is a possible remedy;
however, it is important that observations with the same
value be ordered randomly so that associations between
variables are not induced by the fact the original ordering
of the observations may be associated with the values of
some of the measurement variables. Categorical (nominal)
variables can be accommodated by introducing corre-
sponding (0/1) dummy variables along with randomly
breaking the resulting ties and then Gaussianizing.

6.4 Significance

It is important to know whether a view is indicative of
actual structure in the population or whether it is an arti-
fact of sampling fluctuations. One way to assess this is
to compare the corresponding solution projection index
with values obtained by applying the procedure to Gauss-
ian data. One can repeatedly generate random samples
from a Gaussian distribution of the same dimension and
cardinality as the data sample. The identical procedure
that was applied to the data can then be applied to these
Monte Carlo multivariate normal samples. A comparison
of the resulting (null) distribution of projection index val-
ues to the data sample value gives an indication of its
significance.

6.5 Adjusted Data Plots

With the exception of the first, there are two projections
of interest associated with each projection pursuit solution.
One is the distribution of the data projected onto the
solution line or plane. The other is the projection of the
transformed data after removal of the structure associated
with all previous solutions. In distributional terms, the
former projection is the (joint) distribution of a’Z (and
BTZ) under the original joint data density p(Z). The latter
projection is that distribution under px_,(Z) (28), or the
corresponding two-dimensional analog [see (27)], where
K is the iteration number. At the Kth iteration, projection
pursuit is applied to px_,(Z) to find additional structure.
The Kth solution projection index and the resulting pro-
jection of the transformed data reflect the additional struc-
ture adjusted for (not directly associated with) all previous
solutions. We refer to these as adjusted data plots. They
are the analog of residual plots in regression analysis.

6.6

The output of an exploratory projection pursuit is a
collection of views of the multivariate data set. These views
are selected to be those that independently best represent
the nonlinear aspects of the joint density of the measure-
ment variables as reflected by the data. The nonlinear
aspects are emphasized by maximizing a robust affine in-
variant projection index, whereas the independence is in-
duced by the structure removal process. The data analyst
has at his disposal the values of the parameters (variable
loadings) that define each solution (line or plane) as well
as the projected data density. This information can be used

Interpretation
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to try to interpret any nonlinear effects that might be un-
covered. A visual representation of the projected data
density (histogram, smoothed density estimate, scatter or
contour plot) can be inspected to ascertain the nature of
the effect (clustering, nonlinear relationship). The (scaled)
variable loadings that define the corresponding solution
indicate the relative strength that each (corresponding)
variable contributes to the observed effect.

In a two-dimensional projection pursuit the visual im-
pact of the projected data density is insensitive to a par-
ticular orientation (within the plane) of the orthogonal
axes used to define the solution plane. A rigid rotation of
the projected data about the origin of the solution plane
provides the same picture of the nonlinear effects. There-
fore, it makes sense to orient the defining axes so that the
resulting variable loadings are most easily interpreted. This
usually means maximizing the variance (or some other
dispersion measure) of the (normed) variable loadings so
as to give large loadings to as few variables as possible.
Note that this ““varimax” rotation is performed on the
defining axes in the sphered variable representation Z,
whereas the criterion to be maximized is the variance of
the corresponding (normed) coefficients in the original
data variables Y [see (1)]. Experience indicates that a most
useful varimax rotation is one that maximizes the variance
of the loadings associated with one of the defining axes
(e.g., the vertical axis). ,

Often projection pursuit solutions give rise to small
loadings on several variables. If all (original) variables Y;
(1 = j = p) have similar scales, then those with small
loadings have correspondingly less effect in defining the
solution. For interpretational purposes it is often impor-
tant to know whether these variables have any importance
to the observed structure. This is most easily determined
by (manually) setting the small coefficients to O (in perhaps
a reverse stagewise manner) and then reprojecting the
data. )

6.7 Three- and Higher-Dimensional
Projection Pursuit

In the preceding sections one- and two-dimensional ex-
ploratory projection pursuit algorithms were described.
For data exploration the two-dimensional algorithm is likely
to prove the most useful owing to the increased richness
of structure that can be represented in two dimensions. In
principle there is no upper limit to the dimensionality of
the solution subspace. One could envision a projection
pursuit for finding informative three- and higher-dimen-
sional views, although it is not clear that the richness of
the representation would increase as much as in going from
one to two dimensions. Three-dimensional representa-
tions can be viewed using kinematic graphic techniques
such as rigid rotation (see Donoho, Donoho, and Gasko
1986; Fisherkeller, Friedman, and Tukey 1975; McDonald
1984). There are techniques for (approximate) viewing of
densities in four dimensions (see Tukey and Tukey 1985).
Among the more promising approaches are the “grand
tour” methods (Buja and Asimov 1985).
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A projection index for higher-dimensional pursuit is eas-
ily developed in analogy with the two-dimensional index.
The computational expense would be somewhat greater
owing to the increased complexity of the product Legendre
polynomial expansion and the increased number of opti-
mization parameters. A more serious problem encoun-
tered with higher-dimensional projection pursuit is asso-
ciated with the structure removal process. The difficulty
lies in transforming the higher-dimensional (projected)
distribution to joint standard normality. A strategy anal-
ogous to that for the two-dimensional case would require
a great many directions if they are chosen regularly on the
unit sphere. A better strategy would be to choose a care-
fully selected set of directions that depend on the actual
(projected) data density. This is accomplished by running
a one-dimensional projection pursuit algorithm in the higher-
dimensional projected (solution) subspace. As discussed
in Section 4, this in fact constructs a transformation of the
original data density to standard normality.

7. EXAMPLES

In this section we present the results of running the one-
and two-dimensional projection pursuit algorithms on data.
The first two examples are simulation studies in which we
try to assess the sample size requirements for detecting
(known) structure as a function of increasing data dimen-
sionality. The next three examples show the results of
applying two-dimensional projection pursuit to real data
sets of varying dimension and cardinality. In all examples
no robustification was introduced into the sphering. To
aid in interpretation all variables were standardized to zero
mean and unit variance (‘‘auto-scaled””) before projection
pursuit was applied. In the applications of two-dimensional
projection pursuit the solutions were rotated to maximize
the variance of the loadings on the second (vertical) de-
fining axis (see Sec. 6.6). Execpt for the first real data
example (states data, Sec. 7.3), the order of the Legendre
expansion J [see (10) and (16)] was taken to be J = 6.
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Figure 1. Single Clustered Projection.
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74 Single Clustered Projection in
Several Dimensionalities

The purpose of this study is to get an idea of how the
sample size requirements for finding a single structured
projection increase with the dimensionality of the data
sample. The population for this study is a Gaussian mix-
ture. Two-thirds of the data are generated from a joint
standard normal distribution, and the remaining one-third
is normal with unit covariance matrix, but with location
displaced six units in a random direction. The data are
then scaled to have unit variance in this direction so that
the structure is not reflected in the linear associations among
the variables.

Three experiments were performed at dimensionalities
5, 10, and 15, respectively. Since (by design) the data
structuring appears in only one view (the direction defined
by the difference of the means), this example tests the
projection pursuit algorithm’s ability to find structure in

o

1 l—l
o('.)246810

Figure 2. Iteration at Which the True Population Structure Was Found
forp = 5:(a) N = 45; (b) N = 60.
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the presence of an increasing number of pure noise vari-
ables. From the point of view of projection pursuit this
represents a difficult example, since the structure appears
in only a single projection. Figure 1 shows a histogram of
arandom sample of size 200 from this population projected
onto the solution direction.

At each dimensionality a series of one-dimensional pro-
jection pursuit runs were made to get a rough idea of the
threshold sample size at which the algorithm could reliably
find the (known) structured projection. Since (by design)
the projection pursuit algorithm has some difficulty at these
(threshold) sample sizes, a measure of that difficulty is the
iteration number (projection pursuit followed by structure
removal) at which the algorithm discovers the known
structure as opposed to spurious structure (pseudomax-
ima) induced by the small sample size and/or high di-
mensionality. If for a given sample size and dimensionality
the algorithm repeatedly finds the known structure at the
first iteration, then it is having little difficulty. If, on the
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Figure 3. Iteration at Which the True Population Structure Was Found
forp = 10: (a) N = 200; (b) N = 300.
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other hand, it finds several pseudomaxima (which are sub-
sequently deflated by structure removal) before finding
the real structured projection, this is an indication of some
difficulty.

Figures 2 through 4 show the distribution of the iteration
number at which the true (population) structured projec-
tion was found for 10 random samples for each of 6 sit-
uations. Each situation consists of a specific dimensionality
and sample size. Two sample sizes are shown for each
dimensionality. The first (Figs. 2a, 3a, 4a) is a smaller
sample size at which the algorithm seems to be having
some difficulty and thus represents a minimal cardinality
for finding the true structured projection at the corre-
sponding dimensions. The second (larger) sample size (Figs.
2b, 3b, 4b) is seen to be large enough to find the true
underlying structure fairly reliably. In all runs the deter-
mination as to whether the algorithm found the actual
underlying structure was unambiguous. The projection in-
dex associated with this solution was typically four to five
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Figure 4. Iteration at Which the True Population Structure Was Found
forp = 15: (a) N = 600; (b) N = 999.

Joumnal of the American Statistical Association, March 1987

times that of the spurious solutions (pseudomaxima), and
the solution direction lined up very closely with the di-
rection associated with the underlying (population) opti-
mal projection. It seems that once the optimizer gets close
to the true solution (via the course stepping algorithm)
the gradient-directed search locks on to it very accurately
(and rapidly).

As seen from the figures, the required sample size in-
creases with dimensionality fairly rapidly, but still much
slower than the exponential rate associated with the “curse
of dimensionality.” A qualitative explanation of why the
increase is as rapid as it is has to do with the numerical
optimization. In most statistical methods the size of the
spurious structure associated with sampling fluctuations
has to be comparable to that of the real underlying (pop-
ulation) structure to cause trouble. Here it need only be
large enough (and numerous enough) to trap the numer-
ical optimizer. Nevertheless, the sample size requirements
are seen to be fairly modest for a search dimension of g
= 10. For large samples, search dimensionalities of up to
q = 15 or larger are possible (see Sec. 6.2).

7.2 Needle in a Haystack

The population for this example is again a Gaussian
mixture. In this case, however, the two components of the
mixture have the same location but different covariance
structure. A random sample of size 175 is drawn from a
10-dimensional standard normal. Added to this is a sample
of 25 observations that are standard normal in a 4-dimen-
sional subspace (through the origin) and spherical normal
with covariance matrix .0025 times the identity matrix in
the 6-dimensional complement subspace. As in the pre-
vious example the data are scaled so that this structure is
not reflected in the covariances of the combined data. The
problem is to discover the presence of the small (25 ob-
servation) 4-dimensional needle in a 10-dimensional hay-
stack, in analogy with finding a 1-dimensional needle in a
3-dimensional haystack.

To this end the 1-dimensional projection pursuit algo-
rithm was applied to these data. This problem is difficult
owing to high dimensionality (of the haystack) and the
small cardinality of the needle. On the other hand the
needle is visible (and thus can be found) in any projection
that is orthogonal to its four-dimensional subspace. Figure
Sa shows such a projection of these data.

Figure 5b shows the distribution of the iteration number
at which the projection pursuit algorithm found the needle
in 10 random samples from this Gaussian mixture. As in
the previous example the determination of this was un-
ambiguous. The results indicate that the algorithm was
fairly well able to find a needle of this size. When the size
of the needle is increased to 40 observations (out of 200),
the algorithm always found it on the first iteration.

7.3 States Data

The data for this example are seven summary statistics
associated with each of the 50 United States (Becker and
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Figure 5. Needle in a Haystack: (a) a true solution projection; (b) iteration number at which a true solution was found.

Chambers 1984). Table 1 describes each of the seven vari-
ables. Two-dimensional projection pursuit was applied to
this data set. The results of the simulation study (sec. 7.1)
indicate that the sample size (N = 50) is small for a pro-
jection pursuit in seven dimensions. The eigenexpansion
of the correlation matrix shows that 92% of the (auto-
scaled) data variance is captured by the first four eigen-
values. Therefore, we restrict the projection pursuit to the
subspace spanned by the first principal components (g =
4). Owing to the small sample size, it is unlikely that we
will be able to detect very fine structure, so the order of
the Legendre expansion J [see (16)] was set to J = 2.

To get an idea of the significance of the resulting so-
lutions the identical procedure was applied to (different)
random samples of size 50 drawn from a seven-dimen-
sional standard normal distribution. An ordered list of the
solution projection indices for 20 such (null) runs is given
in part a of Table 2.

When applied to the states data, four iterations of two-
dimensional projection pursuit produced solution projec-
tion indexes of .19, .08, .025, and .023, respectively. When
referenced to the (estimated) null distribution represented
in Table 2 (part a), only the first value is seen to appear
significant (at 5%). Table 3 presents the (varimax rotated)
variable loadings (« and ) associated with the linear com-

Table 1. Measurement Variables for the States Data

Y; population estimate as of July 1, 1975

Y. average income (1974)

Y, illiteracy rate (1970)

Y, life expectancy (1969—-1971)

Ys homicide rate (1976)

Ys high-school graduation rate (1970)

Y; average number of days below freezing temperature (1931-1960)
in capital or large city

binations defining this solution plane. Figure 6 shows the
data projected onto the solution plane.

Viewing Figure 6 shows that the data appear to divide
into two clusters mainly along the vertical direction. In
addition, two outliers are seen in the upper right corner.
A smaller cluster of 12 states seems fairly well separated
from the larger group of 38 states. Table 1 and 3 show
that the dominant loadings associated with the vertical
direction (f) involve income, high-school graduation rate,
and (negatively) illiteracy. This index seems to divide the
states into two fairly distinct groups. The horizontal axis
(@) is dominated by (negative) population, (negative) life
expectancy, and (positive) homicide rate. Thus, increasing
values along the horizontal direction involve generally lower
population and life expectancy, and increasing homicide
rate. The states in the upper cluster generally have a lower
value of the horizontal index than those in the lower one,
with the dramatic exception of the two outliers in the upper
right corner.

Table 4 lists the states of the smaller cluster in decreasing

Table 2. Null Projection Index Distributions for the Data Examples

@p=7qg=4N=50J=2

.022, .025, .028, .028, .030, .030, .030, .030, .030, .033
.033, .038, .038, .045, .058, .060, .060, .065, .065, .098

(b)p =10,q=10,N =392 J =6

.043, .045, .048, .050, .050, .053, .053, .053, .053, .055
.055, .055, .058, .058, .060, .060, .060, .063, .070, .070

(c)p =13, q = 13, N = 506, J = 6

.043, .043, .043, .045, .045, .045, .045, .045, .045, .048
.048, .048, .048, .050, .053, .053, .053, .053, .055, .063

NOTE: Projection index (of order J) values obtained by running two-dimensional projection
pursuit in the subspace spanned by the largest g principal components, on 20 random samples
of size N, drawn from a p-dimensional standard normal.
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Figure 6. States Data: Solution Data Plot.

value of the vertical index. The extreme outlier in the
upper right corner is Alaska whereas the other outlying
point (closest to it) corresponds to Nevada.

7.4 Automobile Data

This data set consists of 10 characteristics associated
with 392 automobile models sold in the United States and
reported in Consumer Reports from 1972 to 1982 (Donoho
and Ramos 1982). Table S lists the 10 variables. The last
three are dummy variables for the manufacturing origin
of the automobile. These dummy variables have only two
distinct values whereas the second variable has only five
distinct values (the value three was encoded for rotary
engine automobiles). Following the discussion in the last
part of Section 6.3, we Gaussianize these variables after
randomly ordering all observations corresponding to the
same value. Part b of Table 2 lists in order of ascending
value the (null) projection index values obtained by 2-
dimensional projection pursuit on 20 random samples of
size N = 392 drawn from a p = 10-dimensional standard
normal distribution.

Six iterations of 2-dimensional projection pursuit on the
automobile data produced projection index values of .31,
.15, .13, .065, .11, and .088, respectively. All but the small-
est value seem significant. The solutions corresponding to
the largest two projection index values are presented in

Table 3. First Projection Pursuit Solution for the States Data

Solution 1: Projection index = .19

a = .52, .26, .08, —.60, .41, .16, .31
p = -.05,.78, -.30, .10, .0, .58, .16

Table 6 and Figure 7. Table 6 shows the (varimax rotated)
loadings (« and f) defining the two solution planes. Figure
7a shows the data projected onto the first solution plane,
and Figures 7b and 7c show the adjusted and original data
plots corresponding to the second solution (see Sec. 6.5).

The first solution exhibits a strong clustering along the
vertical index (approximately twice engine size minus fuel
inefficiency) especially for moderate values of the hori-
zontal index (approximately engine size minus weight).
The second solution displays a distinctly trimodal distri-
bution. Note that this structure is not a direct reflection
of the clustering shown in the first solution owing to the
structure removal.

7.5 Boston Neighborhood Data

This compilation of census data (Harrison and Ruben-
feld 1978) is on its way to becoming a standard test bed
for multivariate procedures. It was published in its entirety
in Belsley, Kuh, and Welsch (1980). Each observation is
a neighborhood (standard metropolitan statistical area) in
the Boston area. Associated with each of these 506 census

Table 4. States Composing the Smaller Cluster Associated With
Lower Values of the Vertical Axis, Listed in Descending
Values of the Vertical Coordinate

New Mexico -1.32 North Carolina -2.29
Texas -1.52 Alabama -2.72
Tennessee -2.01 Arkansas -2.72
West Virginia -2.03 South Carolina -2.98
Georgia -2.08 Louisiana -3.15
Kentucky —-2.24 Mississippi —3.48
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Table 5. Measurement Variables for Automobile Data

Y, gallons per mile (fuel inefficiency)

Y. number of cylinders in engine

Ys size of engine (cubic inches)

Ys engine power (horse power)

Ys automobile weight

Ys acceleration (time from 0 to 60 mph)
Y, model year

Ye American (0/1)

Ys European (0/1)

Yio Japanese (0/1)

tracts are 13 summary statistics that form the variables
associated with each observation. Table 7 lists the quan-
tities that compose the variable set.

These data are well known to contain striking structure,
much of which is exhibited in the coordinate marginal
distributions. Following the discussion in Section 6.3 we
removed the most obvious of this structure (extreme skew-
ness in Y; and Yy;) by the transformations Y; = log(Y;)
and Y}, = log(.4 — Yy).

As with the previous examples, we first obtain an es-
timate for the null distribution of projection index values
by running 2-dimensional projection pursuit on 20 random
samples of size 506 from a 13-dimensional standard normal
distribution. An ordered list of the values so obtained is
shown in part c of Table 2. Note that none of the 20 values
is greater than .07. Running 10 iterations of 2-dimensional
projection pursuit on the Boston neighborhood data pro-
duced solution projection index values of .69, .51, .40,
.25, .34, .26, .31, .20, .22, and .10, respectively. Clearly,
all of these values but the last are highly signficant when
referenced to the null distribution (Table 2, part c). As
the high projection index values indicate, all of these views
(but the last) exhibit striking structure. In the interest of
brevity only the first five are shown. Table 8 lists the so-
lution linear combinations, « f, defining the solution planes
for each of the five solutions.

Figure 8 shows the data projected onto the first solution
plane. Figures 9-12 show both the adjusted and original
data projections for each of the subsequent solutions. The
first solution shows the data dividing into two groups on
the second (“‘big lots™) variable. Even after this structure
is removed, the adjusted plots of the subsequent solutions
show that there is considerable (additional) clustering and
other nonlinear effects. In this case, projection pursuit has
provided a great many views with which to begin exploring
and understanding the data.

Table 6. First Two Projection Pursuit Solutions for the
Automobile Data

Solution 1: Projection index = .31

a = —.72, —.08, .56, .30, —.20, .10, —.13, .00, .00, .02

g = .00, —.01, .91, .14, —.39, .08, —.01, —.03, —.02, —.01
Solution 2: Projection index = .15

a = -.10, .18, —.70, —.15, .22, —.06, —.17, —.23, .45, —.32

B = .03, .09, .00, —.30, .53, —.01, —.10, .34, .19, —.69
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Figure 7. Car Data: (a) First Solution, Data Plot; (b) Second Solution,
Adjusted Plot; (c) Second Solution, Data Plot.

8. DISCUSSION

The examples of the previous section are intended to
illustrate that the exploratory projection pursuit proce-
dures developed in the earlier sections can effectively dis-
cover nonlinear data structuring in fairly high dimen-
sionality with practical sample sizes. The aspects contributing
to this are a projection index that measures nonnormality
in the main body of the distribution rather than in the tails,
an optimization algorithm that combines course stepping
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Table 7. Neighborhood Variables Composing the
Boston Housing Data

Y, log (per capita crime rate)

Y, fraction of land zoned for big lots

Y, fraction of nonretail business land

Y, (nitrogen oxide concentration)? (pphm)?

Ys (average number of rooms)?

Ys fraction of owner-occupied units built before 1940
Y, log (weighted distances to five employment centers)
Ys log (index of access to radial highways)

Ye full-value property-tax rate

Yo pupil-teacher ratio

Y log [.4 — (fraction black population — .63)?]

Y2 log (fraction of lower status population)

Yia log (median value of owner-occupied homes)

followed by gradient-directed optimization, and an effec-
tive technique for structure removal. This algorithm is also
much faster than the Friedman and Tukey (1974) imple-
mentation owing to the superior optimization procedure
but, much more important, to the rapidly computable form
of the projection index (and its derivatives) using the (Le-
gendre polynomial) moment expansion. This should help
make the method more practical to those with fairly mod-
est computing resources.

For purposes of data exploration (as opposed to density
estimation) the two-dimensional projection pursuit pro-
cedure is likely to be more informative than the one-di-
mensional algorithm. This is due to the increased richness
of structure that can be portrayed in a single picture with
two dimensions. Both algorithms have the ability to un-
cover arbitrary nonlinear structure in the high-dimensional
data density. The two-dimensional procedure, however,
can often present the information in a format that is more
easily visualized and interpreted. Features of the density
such as bimodality (clustering), extreme skewness, sharp
peaking, and some kinds of discontinuities can be seen in
both one- and two-dimensional projections. In two di-

Table 8. First Five Projection Pursuit Solution Planes for Boston
Neighborhood Data

Solution 1: Projection index = .69

a = .13, —.41, —.50, —.24, —.04, -.02, .20, .26, .24, —.04, —.50,
14, 19
p = .0,.996, .05, —.02, .0, .02, .02, .04, —.04, —.02, .0, .01, .01

Solution 2: Projection index = .51
a = .12, .23, —.76, —.06, .05, .01, .04, .09, .37, .41, —.09, .10, .12
p = .17, .08, .0, .16, .03, —.13, —.08, .40, .83, .24, .06, —.01, —.11
Solution 3: Projection index = .40

a=-.21,-.23, —-.25,.16, —.19, —.09, .38, —.31, .70, .0, .04, .08,
-.15

p = .17, —-.44, - .79, .07, -.03, —.02, .0, .10, .29, —.28, .03, —.02,
.03

Solution 4: Projection index = .25

-.41, .18, —.23, .22, —.15, .66, .18, —.01, .30, .10, .08, .10, .30
.02, -.09, .13, .07, — .45, .0, .22, —.07, .05, .07, .09, .02, .84

Solution 5: Projection index = .34

a = -03, -.12, —.60, —.01, —.08, .10, —.42, .05, .06, .57, —.05,
-.29, —.12
p = .25, .06, -.55,.71, .0, —-.02, .17, —-.07, —-.29, .0, —.01, .0, .02

=8
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Figure 8. Boston Neighborhood Data, First Solution: Data Plot.

mensions, however, one can additionally see trimodality
(where the modes do not align along a common axis) as
well as arbitrary nonlinear relationships between the cho-
sen variables (linear combinations) determining the pro-
jection plane. The principal disadvantage of the two-di-
mensional procedure is computational. In addition, for the
special case of small data sets in which the data structuring
is almost completely one-dimensional, two-dimensional
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Figure 9. Boston Neighborhood Data, Second Solution: (a) Adjusted
Plot; (b) Data Plot.
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Figure 10. Boston Neighborhood Data, Third Solution: (a) Adjusted
Plot; (b) Data Plot.

projection pursuit can have less power than the one-di-
mensional procedure.

A powerful aid in interpreting the output of this pro-
jection pursuit procedure would be a means for connecting
the various solution plots (views of the data) so that par-
ticular observations or groups of observations in one plot
could be identified in the other views. One could then
easily identify hierarchical clustering as well as many more
types of complex structure from the several views provided
by the different projection pursuit solutions. With a color
terminal supporting dynamic graphics one could use the
color m and n plotting technique (McDonald 1984) to great
advantage. With a black and white terminal (again sup-
porting dynamic graphics) the scatterplot brushing tech-
niques (Becker and Cleveland 1985) would be very useful.
In the absence of either of these alternatives the static m
and n plotting technique (Diaconis and Friedman 1983)
might be of some use. In the absence of these powerful
graphical techniques the varying views can be connected
by more laborious methods involving isolating points in
one view and plotting their positions in the other views.

For the solution projections presented in the previous
section the structure (nonnormality) was fairly striking and
easily recognized from simple point (scatter) plot repre-
sentations of the projected densities. This is not always
the case. Human visual perception is not very good at
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Figure 11. Boston Neighborhood Data, Fourth Solution: (a) Adjusted
Plot; (b) Data Plot.

distinguishing varying densities of points. Only the (local)
presence or absence of points is easily recognized. Fairly
striking density variation is often difficult to see in a scat-
terplot. For this reason it is often helpful to view a graph-
ical representation of a smoothed density estimate of the
projected solution distributions. Structure easily missed in
a scatterplot can be quite evident in such displays. There
are several good methods for (smooth) density estimation
in two dimensions (Scott 1985). These density estimates
can be represented graphically as contour plots, color re-
lief maps, or isometric projections of the three-dimen-
sional surface of the (estimated) density versus the pro-
jection coordinates.

As seen in the examples, exploratory projection pursuit
solutions can sometimes both discover interesting nonlin-
ear effects and suggest straightforward interpretations for
them. More often the interpretation of the discovered
structure is elusive and requires a great deal of study and
further investigation. In this sense applying projection pur-
suit to a data set can often raise more questions than it
(immediately) answers. This is the primary purpose of an
exploratory technique. The discovery of strong (nonlinear)
effects will usually cause the analyst to look harder at the
data with hopefully a corresponding gain in insight and
understanding.

FORTRAN programs implementing the exploratory



266

. o o0 o
RRE M S
0 T V7 Sl
BN A A DTk PN PP { XL X LS
. . N e )
A .-‘"4;-«‘-
. N .._..": ’
-1 S L s e

2 1 0 1

Figure 12. Boston Neighborhood Data, Fifth Solution: (a) Adjusted
Plot; (b) Data Plot.

projection pursuit procedures described are available from
the author.

[Received December 1985. Revised July 1986.]
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